Epidemiology and clinical characters of congenital adrenal hyperplasia patients attending Endocrinology Clinic at Cairo University Children's Hospital

Thesis

Submitted in Partial Fulfillment for the requirements of Master Degree in Pediatrics

By

Reham Mohammad Aly Al Fergany (M.B., B.Ch. Cairo University)

Supervised by

Prof. Dr. Mona Attia Hana
Professor of Pediatrics,
Faculty of Medicine, Cairo University

Prof. Dr. Ghada Mohammad Anwar Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University

$\mathcal{D}r$. Dena Ahmad Ezzat

Lecturer of Pediatrics, Faculty of Medicine, Beni Sueif University

<u>2008</u>

Abstract

Congenital adrenal hyperplasia (CAH) is one of the most frequent inborn endocrine disorders; it comprises autosomal recessive disorders of cortisol biosynthesis in the adrenal gland caused by various enzyme deficiencies. Because of paucity of epidemiological data of CAH in developing countries, this study aimed to identify clinical characters, laboratory parameters and treatment outcomes of CAH in Egyptian children. This is a retrospective study covering 180 patients attended the Diabetes Endocrine Metabolic Pediatric Unit at Cairo University Children's Hospital being a referral center for all Egyptian governorates. examinations. Demographic data. clinical laboratory radiological investigations and treatment options are obtained from the files of patients and analyzed. The results of this study showed that deficiency of 21-hydroxylase is by far the most common cause of CAH, corresponding to more than 90% of our cases. However, 3β-hydroxysteroid dehydrogenase deficiency represents 8%. Salt wasting form accounts for more than 80% of cases followed by simple virilizing then non classic form. Parental consanguinity was found in 62% of cases. Genital ambiguity was the most common presentation followed by salt losing symptoms and signs then premature pubarche manifestations. Our study indicates that newborns with developmental anomalies of the external genitalia should be diagnosed as early as possible so that medical, psychological, and social complications are minimized.

Keywords: CAH, Intersex, 21-hydroxylase deficiency.

بسم الله الرحمن الرحيم وقل ربع زدني علما

صدق الله العظيم طه ١١٤

In the Name of ALLAH, The Most Beneficent, The Most Merciful « And say: My Lord, Increase me in knowledge » Tâ-Hâ 114

ACKNOWLEDGEMENT

Praise be to ALLAH, Lord of world, and may HIS blessings & peace be upon Muhammad, HIS servant and HIS messenger.

"First of all, I am deeply thankful to GOD by the grace of whom this work was possible"

It gives me pleasure to express my sincere gratitude and thanks to Prof. Dr. **Mona Attia Hana**, Professor of Pediatrics & head of Diabetes Endocrine Metabolic Pediatric Unit (DEMPU), Faculty of Medicine, Cairo University for her generous concern, kind supervision and valuable advice and instructions to carry out this work. To her I will always be grateful.

I am indebted to Prof. Dr. **Ghada Mohammad Anwar,** Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University for her sincere supervision, valuable suggestions and continuous cooperation and support saving no effort or time in reading each word in this work.

I wish also to express my appreciation to Dr. **Dena Ahmad Ezzat,** Lecturer of Pediatrics, Faculty of Medicine, Beni Sueif University for her kind supervision, sincere encouragement and continuous support throughout this work.

Last, but not least, I would like to express my gratitude to all members of Diabetes Endocrine Metabolic Pediatric Unit (DEMPU), Faculty of Medicine, Cairo University and to every one who helped me to complete this work.

Reham Mohammad Alfergany
October, 2008

To the soul of my father

To my devoted mother

To my dear husband

To my darling kid

Contents

	Page
List of abbreviations	VI
List of tables	VIII
List of figures	X
Aim of the work	1
 Review of literature Introduction to Congenital Adrenal Hyperplasia (CAH). Epidemiology of CAH Pathophysiology of CAH Genetic background of CAH Clinical phenotypes of CAH Long term outcome of CAH Biochemical phenotypes of CAH Treatment of CAH Prenatal management of CAH 	7 18 25 39 47
Patients & methods	71
Results	75
Discussion	98
Summary and conclusion	106
Recommendations	109
References	110
العربي	الملخص

List of abbreviations

110HD = 11β -Hydroxylase Deficiency

170HD = 17α -hydroxylase deficiency

170HP = 17 Hydroxyprogesterone

17Preg = 17-Hydroxypregnenolone

210HD = 21-Hydroxylase Deficiency

3βHSD = 3 β-Hydroxysteroid Dehydrogenase

3βHSDD = 3 β-Hydroxysteroid Dehydrogenase Deficiency

ABS = Antley-Bixler syndrome

ACTH = Adrenocorticotrophic hormone

AMH = Anti-Mullerian Hormone

AR = Androgen Receptor

ARR = Aldosterone - Renin Ratio

BA = Bone Age

BMD = Bone Mineral Density

BMI = Body Mass Index

BP = Blood pressure

C4A & C4B = complement 4 A & B genes

CAH = Congenital Adrenal Hyperplasia

CaM = Calmodulin dependent protein

cAMP = cyclic Adenosine MonoPhosphate

CPP = Central Precocious Puberty

CRH = Corticotropin Releasing Hormone

CVS = Chorionic Villus sampling

CYP = Cytochrome P450 enzyme

DEMPU = Diabetes Endocrine and Metabolism Pediatric Unit

DHEA = Dehydroepiandrosterone

DHEAS = Dehydroepiandrosterone Sulphate

DNA = Deoxyribonucleic acid

DOC = Deoxycorticosterone

DSD = Disorder of Sex Development

DXM = Dexamethasone

EIA = Enzyme-linked Immunosorbent Assays

FAD = Flavin Adenine Dinucleotide

FAH = Final Adult Height

FGFR2 = Fibroblast Growth Factor Receptor 2

FGFR2 = Fibroblast Growth Factor Receptor 2

FH = Final Height

FIA = Fluoroimmunoassays

FMN = Flavin Mono Nucleotide

FSH = Follicle Stimulating Hormone

GA = Genital Ambiguity

GC = Gas Chromatography

GC = Glucocorticoid

GH = Growth Hormone

GnRHa = Gonadotropin Releasing Hormone analogue

HbA_{1C} = glycosylated hemoglobin A1

HC = Hydrocortisne

HLA = Human Leucocyte Antigens

HPA = Hypothalamic-Pituitary-Adrenal

HSD3B1&HSD3B2 = Hydroxysteroid Dehydrogenase3B1&2 genes

ICU = Intensive Care Unit

IVF = In-vitro Fertilization

LC = Liquid Chromatography

LDL = Low Density Lipoprotein

LH = Luteinizing Hormone

LHRH = Luteinizing Hormone Releasing Hormone

MPH = Mid-Parental Height

MS = Mass Spectrometry

NADPH = Nicotinamide Adenine Dinucleotide Phosphate

NC = Non Classic

NC210HD = Non Classical 21-Hydroxylase Deficiency

ORD = Oxidoreductase Deficiency

PACAP = Pituitary Adenylate Cyclase-Activating Polypeptide

PCOS = Poly cystic Ovarian Syndrome

PCR = Polymerase Chain Reaction

POR = P450 Oxidoreductase

Por gene = P450 Oxidoreductase gene

PRA = Plasma Renin Activity

RIA = Radioimmunoassay

RP1 & RP2 = putative nuclear protein 1& 2 genes

SDS = Standard Deviation Score

SRY = Sex-determining Region on the Y chromosome

StAR = Steroidogenic Acute Regulatory protein

START domain = StAR-Related Transfer domain

SV = Simple Virilising

SW = Salt Wasting

TART = Testicular Adrenal Rest Tumors

TH-SD = Target Height – Standard Deviation

TNXA & TNXB = tenascin-X A & B genes

VIP = Vasoactive Intestinal Polypeptide

XA & XB = tenascin-X A & B genes

List of tables

		Page
Table (1):	Disease frequencies in various ethnic groups	7
Table (2):	Clinical phenotype of the different entities of congenital adrenal hyperplasia (CAH)	25
Table (3):	Diagnostic marker steroids characteristically increased in the different CAH variants	49
Table (4):	Treatment to be made in classical forms of congenital adrenal hyperplasia prior to any surgery or anesthesia	59
Table (5):	Mean and SD of age at presentation	76
Table (6):	Mean and SD of age at diagnosis	77
Table (7):	Mean and SD of duration till diagnosis	78
Table (8):	Reared and genetic sexes distribution	78
Table (9):	Family history of CAH, fetal and sibling deaths in studied patients	80
Table (10):	Family history of CAH, fetal and sibling deaths within each degree of consanguinity	81
Table (11):	Percentage of combined CAH manifestations in studied patients	83
Table (12):	Mean & SD of height, growth velocity, weight and BMI SDS	85
Table (13):	Mean & SD of height SDS, growth velocity SDS, weight SDS and BMI SDS in relation to genetic sex	86
Table (14):	Mean & SD of age at diagnosis, at starting normal puberty and menarche and steroid doses in FAH	87
Table (15):	Mean & SD of FAH, its SD and ages at reaching it	87
Table (16):	Mean & SD of ages at central precocious puberty, normal puberty and menarche	89
Table (17):	Stages of testicle development in genetic males	89
Table (18):	Stages of breast development in genetic females	90

Table (19):	Comparison between patients developed C.P.P and patients reached normal puberty	91
Table (20):	Mean & SD of gonadotropin hormones in genetic males and females developed CPP	92
Table (21):	Bone ages in studied patients	93
Table (22):	Abdomino-pelvic ultrasound pictures	93
Table (23):	Genitography results	93
Table (24):	Mean & SD of glucocorticoid dosage	94
Table (25):	Mean & SD of mineralocorticoid dosage	94
Table (26):	Correlations between the severity of CAH forms and age at presentation, family history of CAH, fetal deaths, sibling deaths and Prader's classification	96
Table (27):	Correlations of the compliance with hydrocortisone dose and hormonal control status	96
Table (28):	Correlations of different growth parameters	97

List of figures

		Page
Fig. (1):	Steroidogenic pathway	4
Fig. (2):	Regulation of cortisol secretion in normal subjects and in patients with congenital adrenal hyperplasia	10
Fig. (3):	Normal and abnormal differentiation of the urogenital sinus and external genitalia (cross sectional view)	11
Fig. (4):	Normal and abnormal differentiation of the external genitalia (external view)	11
Fig. (5):	Endocrine imbalances characteristic of CAH	14
Fig. (6):	Proposed alternative pathway in human androgen biosynthesis present during fetal life	17
Fig. (7):	Map of the genetic region around the 21-hydroxylase (CYP21) gene	19
Fig. (8):	Electron transfer chain from POR to CYP type 2 enzymes	22
Fig. (9):	Clinical presentation of classic 21-hydroxylase deficiency	28
Fig. (10):	Clinical spectrum of steroid 21-hydroxylase deficiency	29
Fig. (11):	Transitional care of patients with CAH	46
Fig. (12):	Patients with 21-hydroxylase deficiency, the treatment outcome in classic congenital adrenal hyperplasia	58
Fig. (13):	Simplified algorithm for prenatal diagnosis and treatment of CAH	67
Fig. (14):	Prader's classification of grades of genital ambiguity	72
Fig. (15):	Percentage of CAH variants among the study population	75
Fig. (16):	Percentage of CAH subclasses within 21-OHD and 3β-HSDD	76

Fig. (17):	Genetic sex distribution in patients reared as males and females and subsequent correction of reared sex	79
Fig. (18):	Percentage of consanguinous marriage among the study population	80
Fig. (19):	Percentage of presenting symptoms in the studied patients	82
Fig. (20):	External genitalia pictures in CAH patients	84
Fig. (21):	Prader's classification of virilized female external genitalia	84
Fig. (22):	Pubertal state distribution among genetic males and females	88
Fig. (23):	Control status in patients with 210HD	95

Aim of the Work

Congenital adrenal hyperplasia (CAH) is one of the most frequent inborn endocrine disorders; it comprises autosomal recessive disorders of cortisol biosynthesis in the adrenal gland caused by various enzyme deficiencies. The consequent compensatory rise of ACTH production causes hyperplastic growth of the adrenal glands. The clinical presentation of patients with CAH is heterogeneous and depends on the type of deficient enzyme as well as on the sex of the patient.

Because of paucity of epidemiological data of CAH in developing countries, this work aimed to identify clinical characters, laboratory parameters and treatment outcomes of CAH in Egyptian children who have attended the Diabetes Endocrine and Metabolism Pediatric Unit (DEMPU) at Cairo University Children's Hospital being a referral center for all Egyptian governorates.

REVIRW OF LITERATUTRE