COMPARATIVE EVALUATION OF REAL TIME MULTIPLEX PCR, COPRO-ANTIGEN DETECTION ASSAYS AND MICROSCOPY FOR THE DIAGNOSIS OF ENTAMOEBA HISTOLYTICA, GIARDIA INTESTINALIS AND CRYPTOSPORIDIUM SPECIES INFECTIONS

THESIS SUBMITTED TO

Faculty of Medicine, Ain Shams University for partial fulfillment of MD in medical Parasitology

ΒY

John Talaat Nazeer

M.B, B.Ch. MSc Assistant lecturer of Parasitology Faculty of Medicine, Ain Shams University

SUPERVISORS

Prof. Dr. Mahmoud Mohamed El-Sibaei

Professor of Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr. Magda Youssef Abdel-Hamid

Professor of Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr. Khalifa El-Sayed Khalifa

Professor of Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr. Egbert Tannich

Professor and Chairman, Head of Molecular Parasitology Department Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.

Dr. Ranya Ayman Samir Tawfik

Assistant professor of Parasitology Faculty of Medicine, Ain Shams University

Parasitology Department
Faculty of Medicine, Ain shams University
2014

مقارنة تقييمية لتفاعل البلمرة التسلسلي الوقتى المتعدد، اختبار الانتيجين في البراز والفحص الميكروسكوبي لتشخيص عدوى الانتاميبا هستوليتيكا، الجيارديا المعوية والكريبتوسبوريديوم

موضوع رسالة مقدم الى كلية الطب جامعة عين شمس توطئة للحصول على درجة الدكتوراه في العلوم الطبية الاساسية (علم الطفيليات)

مقدم من *الطبيب/ چون طلعت نظير*

مدرس مساعد بقسم علم الطفيليات كلية الطب – جامعة عين شمس

المشرفون

الأستاذ الدكتور/ محمود محمد السباعي

الأستاذ بقسم علم الطفيليسات كلية طب مجامعة عين شمس

الأستاذة الدكتورة/ ماجدة يوسف عبد الحميد

الأستاذة بقسم علم الطفيليسات كلية طب مجامعة عين شمس

الأستاذ الدكتور/ خليفة السيد خليفة

الأستاذ بقسم علم الطفيليسات كالية طب مجامعة عين شمس

الأستاذ الدكتور/ ايجبرت تانيش

أستاذ ورئيس قسم البيولوجيا الجزيئية لعلم الطفيليات بمعهد برنهارد نوخت لطب المتاذ ورئيس المناطق الحارة، هامبورج، المانيا

الدكتــورة/ رانية أيمن سمير توفيق

الأستاذ المساعد بقسم علم الطفيليسات كلية الطب مجامعة عين شمس

قسم علم الطفيليــــات كلية الطب _ جامعة عين شــمـس 2014

First of all, thanks to God, to whom I relate any success that can be achieved at work in my life.

Words are not enough to express how deeply grateful I am to **Prof Dr. Mahmoud Mohamed El-Sibaei,** Professor of Parasitology, Faculty of Medicine, Ain Shams University, for his immense support and much of his time for this work to be done.

I am greatly honored to express my high appreciation and gratitude to **Prof. Dr.MagdayoussefAbdel-Hamid**, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for her gracious supervision, precious advice, and continuous encouragement through the whole research.

Words can never express my gratitude and thanks to **Prof.Dr. KhalifaElsayedKhalifa**, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for his kind help, meticulous supervision and continuous support and guidance throughout this work.

Also I would like to express my gratitude and appreciation to **Prof. Dr.Egbert Tannich**, Head of Molecular Parasitology Department Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, for his fruitful encouragement, vast knowledge and valuable support.

I am heartily thankful to **Dr. RanyaAyman Samir**, Assistant Professor of Parasitology for her guidance and support from the initial to the final level.

Actually I'd like to show my gracefulness for the kind financial support by the Institute for Quality Assurance in Laboratory Medicine "INSTAND e.v.", Dusseldorf, Germany.

Finally, I wish to thank all my family especially my wife, all my colleagues and any member who shared in this modest piece of work for their cooperation and patience.

Abstract

Diarrhea is an important cause of morbidity and mortality, Giardia intestinalis, Cryptosporidium spp. Entamoeba histolytica are the most common diarrhea-causing parasitic protozoa. Diagnosis of these parasitic infections is usually performed by microscopy. However, microscopy lacks sensitivity and specificity. One important alternative is the development of an antigen capture ELISA for use with stools. These tests that are fairly simple to perform and do not require the observation of intact organisms, have shown comparable sensitivity to experienced microscopic examinations. Replacing microscopy with more sensitive and specific nucleic acid based methods is hampered by the higher costs, in particular in developing countries. Multiplexing the detection of more than one parasite in a single test by real time PCR has been found to be very effective and would decrease the cost of the test. In the present study, stool samples collected from 396 Egyptian patients and 202 healthy controls were tested by multiplex real-time for simultaneous detection of Entamoeba histolytica, intestinalis, and Cryptosporidium spp. Giardia intestinalis was found to be the most common protozoan parasite causing diarrhea (37.1%) followed by Cryptosporidium spp. (3.0%). While, none of the diarrheal cases gave positive results for Entamoeba histolytica, 2.0% revealed DNA from non-pathogenic Entamoeba dispar. The current study has revealed that multiplex real-time **PCR** showed better performance when compared microscopy and copro-antigen ELISA. Although the reagents costs are higher compared to microscopy, pooling of samples to a reference laboratory would reduce the running cost of the test which is more sensitive and specific.

Key words: Diarrhea, Egypt, Protozoa, ELISA, Multiplex, Real time PCR

List of Abbreviations

5-HT	5-hydroxytryptamine				
Ag	Antigen				
AIDS	Acquired Immunodeficiency Syndrome				
ALA	Amoebic liver abcess				
Bcl-2	B-cell lymphoma-2				
CD	Cluster of differentiation				
CIEP	Counter immunoelectrophoresis				
Ct	Cycle threshold				
DAPs	Disc-associated proteins				
DFA	Direct Fluorescent Antibody				
DNA	Deoxyribonucleic acid				
E. disp	Entamoeba dispar				
E. histo	Entamoeba histolytica				
EhCP	Entamoeba histolytica Cysteine Protinase				
EIA	Enzyme Immunoassay				
ELISA	Enzyme Linked Immunosorbent Assay				
ER	Endoplasmic reticulum				
Fe-Hx	Iron haematoxylin stain				
FRET	Fluorescence resonance energy transfer				
G	Group				
GIT	Gastrointestinal Tract				
H. nana	Hymenolepis nana				
HAART	Highly Active Antiretroviral Therapy				
HIV	Human Immunodeficiency Virus				
HLA	Human Leukocyte Antigen				
ICT	Immunochromatographic Test				
IL-10	Interleukin-10				
IFA	Indirect Fluorescent Antibody				
IFN-γ	Interferon-γ				
Ig	Immunoglobulin				
IL	Interleukin				
mAb	Monoclonal Antibody				
Mic	Microscopy				

MIF	Merthiolate (thimerosal)-iodine-formalin			
min	Minutes			
mRNA	Messenger Ribonucleic acid			
MZN	Modified Ziehl Neelsen			
No	Number			
NF-κB	Nuclear Factor-κB			
O&P	Ova and Parasite			
PCR	Polymerase Chain Reaction			
PGE2	Prostaglandin E-2			
PMNs	Polymorphonuclear neutrophils			
PV	Parasitophorus Vacuole			
PVA	Polyvinyl alcohol			
qPCR	Quantitative Real time PCR			
rRNA	Ribosomal Ribonucleic acid			
SAF	Sodium acetate-Acetic acid-Formalin			
SEM	Scanning electron microscope			
SM	Safranin methylene blue			
SPCDIS	Solar photocatalytic disinfection			
Spp.	Species			
TEM	Transmission electron microscope			
TGF-β	Transforming Growth Factor-β			
TNF-α	Tumour Necrosis Factor-α			
TPI	Triose phosphate isomerase			
μm	Micron			
UV	Ultra violet			
VSP	Variant surface proteins			
WHO	World Health Organisation			
WT	Wheatley trichrome stain			
ZO1	Zonula occludens1			
ZN	Ziehl Neelsen			

List of Tables

Table		Page			
Table (1)	Common pathogens of acute infectious diarrhea				
Table (2)	Oligonucleotide primers and probes used for Entamoeba histolytica/ dispar, Giardia intestinalis, and Cryptosporidium spp. Multiplex- real-time PCR	176			
Table (3)	The Primer, probe volumes and final concentrations/ reaction	178			
Table (4)	Comparison of the results of a diagnostic test with a reference golden standard using a 2x2 table	185			
Table (5)	Age of cases and control group	187			
Table (6)	Gender distribution among cases and control group	187			
Table (7)	Clinical manifestations among cases	188			
Table (8)	Stool consistency among cases				
Table (9)	Comparison of direct smear method with formol-ethyl acetate concentration technique for the detection of enteric parasites among 396 patients with diarrhea and 202 control subjects	192			
Table (10)	Grouping of the 396 diarrheal cases according to the results of direct microscopy	193			
Table (11)	Results of specific ELISA for detection of <i>Entamoeba histolytica, Giardia intestinalis</i> and <i>Cryptosporidium</i> spp.	198			
Table (13)	Comparative evaluation of direct microscopy and <i>GIARDIA</i> II ELISA test for diagnosis of <i>Giardia intestinalis</i> among cases	200			
Table (12)	Comparative evaluation of direct microscopy and <i>CRYPTOSPORIDIUM</i> II ELISA test for diagnosis of <i>Cryptosporidium</i> spp. among cases	200			

Table (14)	Results of Multiplex- real time PCR for detection of <i>Entamoeba dispar</i> , <i>Entamoeba histolytica</i> , <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp.	203
Table (15)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Giardia intestinalis</i> among diarrheal cases	207
Table (16)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Cryptosporidium</i> spp. among diarrheal cases	208
Table (17)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Entamoeba dispar</i> among diarrheal cases	209
Table (18)	Comparative evaluation of microscopy, multiplex- real time PCR and ELISA for the detection of <i>Giardia intestinalis</i> against an expanded gold standard	211
Table (19)	Comparative evaluation of microscopy, multiplex- real time PCR and ELISA for the detection of <i>Cryptosporidium</i> spp. against an expanded gold standard	212
Table (20)	Sensitivity, specificity, positive and negative predictive values of microscopy, ELISA and PCR in the detection of <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp. against an expanded gold standard	213
Table (21)	Comparative evaluation of direct microscopy and real-time multiplex PCR for diagnosis of <i>Entamoeba dispar</i> among cases	217
Table (22)	Comparative evaluation of direct microscopy, GIARDIA II ELISA and real-time multiplex PCR for diagnosis of Giardia intestinalis among cases	217
Table (23)	Comparative evlaution of direct microscopy, <i>CRYPTOSPORIDIUM</i> II ELISA and real-time PCR for diagnosis of <i>Cryptosporidium</i> spp. among cases	218

Table (24)	Sensitivity, specificity, positive and negative predictive values of microscopy compared to multiplex real-time PCR for detection of <i>Entamoeba histolytica/dispar</i> , <i>Giardia intestinalis and Cryptosporidium</i> spp. in the stool of 396 diarrheal patients	220
Table (25)	Sensitivity, specificity, positive and negative predictive values of ELISA compared to multiplex real-time PCR for detection of <i>Entamoeba histolytica, Giardia intestinalis and Cryptosporidium</i> spp. in the stool of 396 diarrheal patients	222
Table (26)	Comparative evaluation of direct microscopy, GIARDIA II ELISA and real-time multiplex PCR for diagnosis of Giardia intestinalis among controls	224

List of Figures

Figure		Page				
Figure (1)	Proportional distribution of diarrhea cases among children less than five years of age, by region, 2004					
Figure (2)	Mortality rate of children under five (per 1,000 births)					
Figure (3)	Schematic diagram showing <i>Giardia intestinalis</i> trophozoite	22				
Figure (4)	Schematic diagram for the Giardia intestinalis cyst	23				
Figure (5)	Transmission electron microscopy (TEM) view of Giardia intestinalis trophozoite	23				
Figure (6)	Life cycle of Giardia intestinalis	26				
Figure (7)	Mucosal surface of the small intestine of a gerbil infected with <i>Giardia</i> protozoa	28				
Figure (8)	The ultrastructural morphology of a <i>Giardia</i> protozoan's ventral adhesive disk					
Figure (9)	Cryptosporidium oocyst morphology	37				
Figure (10)	Transition electron microscope diagram of sporozoite	37				
Figure (11)	Schematic representation of the <i>Cryptosporidium</i> spp. life cycle	41				
Figure (12)	Pathogenesis of cryptosporidial enteropathy and cholangiopathy	45				
Figure (13)	Schematic diagram showing trophozoite and cyst of <i>Entamoeba histolytica</i>	54				
Figure (14)	Variation in nuclear structure of Entamoeba histolytica	55				
Figure (15)	Ultrastructure of <i>Entamoeba histolytica</i> trophozoites	56				
Figure (16)	Life cycle of Entamoeba histolytica	57				

Figure (17)	Model for <i>E. histolytica</i> tissue damage in amoebic colitis	63				
Figure (18)	Morphological features of <i>Entamoeba</i> histolytica	70				
Figure (19)	Morphological features of Giardia intestinalis					
Figure (20)	Stained Cryptosporidium spp. oocysts					
Figure (21)	IFA Giardia and Cryptosporidium	77				
Figure (22)	Schematic diagram of Ag detection immunocapture sandwich ELISA					
Figure (23)	Model for Immunochromatographic test	81				
Figure (24)	Principle of Immunochromatographic test	81				
Figure (25)	Polymerase Chain Reaction (PCR)	102				
Figure (26)	Real-time PCR					
Figure (27)	SYBR Green I assay					
Figure (28)	TaqMan 5' nuclease hydrolysis probe					
Figure (29)	Real-time FRET probe technologies					
Figure (30)	Principle of Scorpion probe technology					
Figure (31)	Optical detection system layout					
Figure (32)	Informed consent					
Figure (33)	Formal ether sedimentation concentration technique, after centrifugation					
Figure (34)	QIAamp DNA Mini stool Kit procedure					
Figure (35)	Mechanism of PCR cycling inside Rotor gene					
Figure (36)	Log plot of amplification curves, comparing baseline, threshold, and threshold cycle (Ct) values	181				
Figure (37)	Relation between initial template amount and Ct value	183				

Figure (38)	Clinical manifestations among cases					
Figure (39)	Stool consistency among cases					
Figure (40)	Iodine stained stool smear of a diarrheal case showing two-nucleated <i>Entamoeba histolytica/dispar</i> cyst with chromatoid bar (X 1000)					
Figure (41)	Iodine stained stool smear of a diarrheal case showing <i>Giardia intestinalis</i> trophozoite (X 1000)					
Figure (42)	Iodine stained stool smear of a diarrheal case showing <i>Giardia intestinalis</i> cyst (X 1000)	194				
Figure (43)	A modified Ziehl Neelsen stained smear of a diarrheal case, showing <i>Cryptosporidium</i> oocyst (X 1000)	195				
Figure (44)	Other parasites detected in the stool smear of diarrheal cases					
Figure (45)	Real time PCR amplification curves for detection of <i>Giardia intestinalis</i>					
Figure (46)	Real time PCR amplification curves for detection of <i>Cryptosporidium</i> spp.					
Figure (47)	Real time PCR amplification curves for detection of <i>Entamoeba dispar</i>	205				
Figure (48)	Real time PCR amplification curves for the internal control	205				
Figure (49)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Giardia intestinalis</i> among diarrheal cases					
Figure (50)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Cryptosporidium</i> spp. among diarrheal cases					
Figure (51)	Relation between the frequencies of multiplex- real time PCR Ct values and microscopy results of <i>Entamoeba dispar</i> among diarrheal cases					

Figure (52)	Sensitivity of microscopy, ELISA and PCR in the detection of <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp. against an expanded gold standard					
Figure (53)	Specificity of microscopy, ELISA and PCR in the detection of <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp. against an expanded gold standard					
Figure (54)	Positive predictive values of microscopy, ELISA and PCR in the detection of <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp. against an expanded gold standard	214				
Figure (55)	Negative predictive values of microscopy, ELISA and PCR in the detection of <i>Giardia intestinalis</i> and <i>Cryptosporidium</i> spp. against an expanded gold standard	215				
Figure (56)	Sensitivity, specificity, positive and negative predictive values of microscopy compared to multiplex real-time PCR for detection of <i>Entamoeba histolytica/dispar</i> , <i>Giardia intestinalis and Cryptosporidium</i> spp. in the stool of 396 diarrheal patients	221				
Figure (57)	Sensitivity, specificity, positive and negative predictive values of ELISA compared to multiplex real-time PCR for detection of <i>Entamoeba histolytica</i> , <i>Giardia intestinalis and Cryptosporidium</i> spp. in the stool of 396 diarrheal patients	223				

List of contents

Abstract	Ι
List of Abbreviations	II
List of Tables	IV
List of Figures	VII
Introduction	1
Aim and Plan of the work	7
Review of literature	
- Diarrhea	9
- Common protozoan parasites causing diarrhea	16
- Diagnosis of enteric protozoa	64
- Real time PCR	99
Subjects and Methods	137
Results	186
Discussion	225
Conclusion	246
Recommendations and Future studies	247
Summary	248
References	254
Arabic summary	