

جامعه عين شمس كلية البنات للآداب و العلوم و التربية قسم النبات

تأثير العلاقة التكافلية بين البقوليات _ الريزوبيا و الكمبوست على خصوبة التربة من خلال الدورة الزراعية

رسالة مقدمة من الطالبة

سعاد يوسف سرى (ميكروبيولوجي) ۱۹۹۸ ماجستير في العلوم (ميكروبيولوجي) ۲۰۰۷

للحصول علي درجة تكتوراه الفلسفة في العلوم (ميكروبيولوجي)

قسم النبات كلية البنات للآداب و العلوم و التربية جامعة عين شمس

EFFECT OF LEGUME-RHIZOBIUM SYMBIOSIS AND COMPOST ON SOIL FERTILITY THROUGH CROP ROTATION SYSTEM

A Thesis Submitted to Botany Department Women's College, Ain Shams University

For

The Degree of Ph. D. in Science (Microbiology)

By

Soaad Yousef Serry El-Sayed

B.Sc. Microbiology, Women's College, Ain Shams Univ., 1998 M.Sc. Microbiology Women's College, Ain Shams Univ., 2007

Botany Department

Women's College, for Arts Science and Education
Ain Shams University

EFFECT OF LEGUME-RHIZOBIUM SYMBIOSIS AND COMPOST ON SOIL FERTILITY THROUGH CROP ROTATION SYSTEM

A Thesis Submitted to Botany Department Women's College, Ain Shams University

For The Degree of Ph. D. in Science (Microbiology)

By

Soaad Yousef Serry El-Sayed

B.Sc. Microbiology, Women's College, Ain Shams Univ., 1998 M.Sc. Microbiology Women's College, Ain Shams Univ., 2007

Supervised by

- Prof. Dr. Atef Fathalla Mohamad Abdel wahab.......

 Senior Researcher, Department of Agricultural Microbiology
 Soil, Water and Environment Institute Agricultural Research
 Center (ARC)
- Dr. Mona Mohamad Abo El Nour

 Doctor of Microbiology, Botany Department Women's College for Arts, Science and Education Ain Shams University

ABSTRACT

Three rhizobial strains (ARC-201,202 and 203) were investigated in an *in vitro* experiment to evaluate their efficiency to some environmental limiting factors (pH, salinity, temperature and nitrogen concentration). The growth response was evaluated using plate count technique. A plant infection technique experiment was done to evaluate the symbiotic performance of the tested rhizobial strains to nodulate two *Pisum sativum* varieties (master pea and little marvel). Result revealed that ARC-201 and 202 strains performed good results with master pea variety.

Accordingly, field experiments were conducted at Ismailia **Experiments** Research Station, Agricultural El-Ismailia Governorate during the two successive seasons November 2008 to February 2009 and June 2009 to September 2009 to accommodate two rotation cycles (pea/maize - potato/maize). Addition of (Rhizobium plant growth biofertilizers and promoting and organic fertilizer (compost) were rhizobacteria) investigated to study their integrated effects on improving of nutrients availability, chemical and biological activity of the tested sandy soil.

The two rotation cycles were established to investigate the effect of inclusion legume crops(pea) in the rotation compared to heavy feeder crops (potato), on plant growth and yield of the subsequent crop (maize), as well as soil organic matter level, microbial biomass and soil enzymes and microbial activities of the soil. Results demonstrated that the pea/corn rotation has been

shown to improve the investigated growth parameters, yield response and NPK accumulation significantly relative to potato/corn rotation. Significant soil fertility improvement was also observed. Balanced fertilization using both organic and chemical fertilizers in such legume rotation system was reported to reduce fertilizer N requirement.

Maximum values of all the investigated parameters were obtained when 120 and 90 kg N/fed were applied in combination with the enriched compost in the pea/corn rotation. At the end of the experiments the results also showed a significant improvement in chemical properties (organic C, total N and available P and K) and biological properties (total microbial count, CO₂ evolution and dehydrogenases activity) of the soil.

Key words: Compost, PGPR, *Rhizobium*, pea productivity and legume crop rotation, inorganic fertilizer, maize productivity, strain selection.

Dedication

After God almighty, there are several people to whom I owe a great deal of gratitude and thanks

My dearest parents

Without them this work would never have been started.

My beloved husband

Who patiently supported this work

My daughters and son

For them this work has been done

My sisters and brother

Without them this work would never have been done

My closely friend

Dr. Hend M. El-Egami

ACKNOWLEDGEMENT

This is the time for a last and personal words. This is the time to say,

Thanks for all of you

I wish to express my sincere thanks and appreciation to my **Prof. Dr. Fatma Abdel Wahab Helemish** Doctor of Microbiology, Faculty of Women, Ain Shams University for her supervision, positive support during the study and guidance through the course of study and revision the manuscript of this thesis.

I am particularly indebted to my dearest **Dr.Mona Mohammad Abou ElNour.** Lecturer of Microbiology, Faculty of Women, Ain Shams University for her countless fruitful discussions and for giving me every possible help through the different stages of this work special thanks are also due to her carefully reviewing the manuscript and providing invaluable comments and suggestion for its improvement.

I would like to express my worm thanks to **Prof. Dr. Atef**Fathalla Mohamed Abdel-Wahab Head of Researcher, Dep. Of
Agric. Microbiology, Soils Water and Environ. Res. Institute,
ARC, Giza. For his supervision, guidance, continual assistance and
for supplying all facilities, help and providing the required need for
this work and revision the manuscript of this thesis.

Grateful appreciation is also extended to **all staff** members of Unit Biofertilizers, Microbiology Department, Soil, Water and Environment Institute, Agriculture Research Center (ARC).

Thanks are also to stuff members of Botany Department, Faculty of Women, Ain Shams University.

CONTENTS

1.	Introduction	1
2.	Review of literature	
2.1.	Importance of legume inoculation	7
	Symbiotic nitrogen fixation as renewable source of	
	improvement	11
2.3.	The key role of legumes in crop rotation system	. 15
2.3.1	1. Soil fertility and nutrients availability	. 15
2.3.2	2. Growth and yield (productivity) improvement	. 19
2.4.	Beneficial effects of crop rotations system	. 25
2.5.	The possible role of fertilizers on crop growth and	soil
	fertility improvement.	. 28
2.5.1	1. Combined use of different fertilizers.	. 29
2.6	Soil enzyme activity as bio-indicator of soil fertility	. 39
3.	Materials and Methods	. 44
3.1.	Materials	. 44
3.1.1	Bacteria used	44
	- Rhizobial strains	
B	- Plant Growth Promoting Rhizobacteria (PGPR)	. 44
	2. Media used	
3.1.3	3. Seeds	. 46
3.1.4	4Experimental site	. 47
3.1.5	5Compost used	. 47
3.2.	Methods	50
3.2.1	Maintenance of stock cultures	50
	2. Inoculants preparation	
	3. Assessment of growth and survival of the rhizobial str	
	der some limiting factors	
3.2.3		
3.2.3		
3.2.3		
3.2.3	-	
3.2.4	\mathcal{E}	
3.2.4	-	
3.2.4	1	
	-	
3.2.4	4.3. The second phase of the rotation cycle (Zea maize)	. 54

3.3. Soil analysis	56
3.3.1. Soil chemical determinations	56
3.3.2. Evaluation of soil biological activity	57
3.4 Plant measurements	58
3.5. Statistical analyses	59
4. Results	60
4.1 In vitro growth of Rhizobium leguminosarum s	trains under
some environmental stress conditions	
4.2. Pea plants responses to inoculation in a pot exper	riment 63
4.3. The field experiments	
4.3.1. The first phase of the rotation cycle	
4.3.1.1. Response of <i>Pisum sativum</i> (master pea) to b	
and reduced N-fertilizer	
4.3.2. The second phase of the rotation cycle	
4.3.2.1. Growth aspects of maize plants and some ma	
accumulation	
4.3.2.2. Yield and its attributes of maize plants	
macronutrients accumulation	
4.4 Chemical and biological properties assay of	f soil corn
rhizosphere after harvesting	
5. Discussion	
5.1. Effect of different environmental stress condition	s on in vitro
growth of rhizobial strains	102
5.2. <i>Rhizobium</i> - legume compatibility	103
5.3. First phase of the rotation	
5.3.1. Improvement of leguminous cultivation by integ	
bio, organic and mineral fertilization	104
5.4. The second phase of the rotation	112
5.4.1. Growth response of maize to integrate	ed nutrient
management in different cropping systems	112
5.4.2. Yield response of maize to integrated nutrient r	
in different cropping systems	
5.4.3. Maize shoot, root and grain mineral accumulation	
5.5. Impact of rotation program on soil chemical and	
biological properties amended with integrated	l nutrients
management	
6. Summary	

7.	Conclusion	153
8.	Recommendation	155
9.	References	157

LIST OF TABLES

Table 1: Physical, chemical and microbiological analysis of the used soil
Table 2. Some physical, chemical and microbiological properties of the prepared compost
Table 3. Effect of some environmental stresses on growth and survival of the tested <i>Rhizobium leguminosurum</i> strains
Table 4. Response of pea variaties to the tested rhizobial strians (Plant infection technique)
Table 5. Effect of co-inoculation, reduced nitrogen and compost application on growth, nodulation and yield of pear plants (60days)
Table 6a. Main effect of N-fertilizer levels, compost manuring and rotation systems on vegetative growth of maize after 70 days
Table 7a. Main effect of N-fertilizer levels, compost manuring and rotation systems on nutrient status of maize after 70 days
Table 6b. Effect of compost manuring and N-fertilization on vegetative growth of maize plants grown in sandy soil previously cultivated with pea or potato after 70 days of planting
Table 7b. Effect of compost manuring and N-fertilization on nutrient status of maize plants grown in sandy soil previously cultivated with pea or potato after 70 days of planting
Table 8a. Main effect of compost manuring and N-fertilization on the yield and its attributes of maize plants grown in sandy soil previously cultivated with pea or potato 83

Table 9a. N	Main effect of compost manuring and N-fertilization on some macronutrients of maize yield grown in sandy soil previously cultivated with pea or potato
Table 8b. I	Effect of compost manuring and N-fertilization on yield and its attribute of maize plants grown in sandy soil previously cultivated with pea or potato
Table 9b.	Effect of compost manuring and N-fertilization on macronutrients of maize yield grown in sandy soil previously cultivated with pea or potato
Table 10. S	Some chemical and biological characteristic, soil before and after pea and potato harveste
Table 11.	Effect of compost manuring and N-Fertilization on chemical and biological characteristic, soil after maize harvest

LIST OF FIGURE

Figure 1. Effect of some environmental stresses on growth and survival of the tested <i>Rhizobium leguminosurum</i> strains
Figure 2a. Effect of rhizobial inoculation on the vegetative growth of master pea and little marvel cultivars
Figure 2b. Effect of rhizobial inoculation on the vegetative growth of master pea and little marvel cultivars
Figure 3a. Effect of combined application of organic-mineral fertilizer on vegetative growth of maize plants under crop rotation system.
Figure 3b. Effect of combined application of organic-mineral fertilizer on vegetative growth of maize plants under crop rotation system
Figure 4a. Effect of combined application of organic-mineral fertilizer on nutrient status of maize plants under crop rotation system.
Figure 4b. Effect of combined application of organic-mineral fertilizer on nutrient status of maize plants under crop rotation system.
Figure 5a. Effect of combined application of organic-mineral fertilizer on yield and its components of maize plants under crop rotation system
Figure 5b. Effect of combined application of organic-mineral fertilizer on yield and its components of maize plants under crop rotation
Figure 6a. Effect of combined application of organic-mineral fertilizer on macronutrients of maize yield under crop rotation system
Figure 6b. Effect of combined application of organic-mineral fertilizer on macronutrients of maize yield under crop rotation system

LIST OF ABBREVIATIONS

ATPase Adenosine Triphosphatase

BNF Biological Nitrogen Fixattion

CFU Colony Forming Units

FYM Farm Yard Manure

IAA Indole Acetic Acid

NA Nutrient Agar

OM Organic Matter

PGPB Plant Growth Promoting Bacteria

PGPR Plant Growth Promoting Rhizobacteria

Tg Teragram

TPF Triphenyl formazane

TTC Tetrazolium Chloride

YEM Yeast Extract Mannitol