دور جهاز الأشعة المقطعية متعدد الشرائح في تقييم حالات أمراض الشرايين التاجية في مرضى السكري

رسالت توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

> مقدمة من الطبيب/ أثيل ليث حميد بكالوريوس الطب والجراحة

تحت اشراف الأستاذ الدكتور/ حازم فوزي أبو الحمايد

أستاذ مساعد الأشعة التشخيصية كلية الطب - جامعة عين شمس

الدكتور/عمرو محمود عبدالصمد

مدرس الأشعة التشخيصية كلية الطب - جامعة عين شمس

كلية الطب ـ جامعة عين شمس ٢٠١٣

THE ROLE OF MULTI SLICE COMPUTED TOMOGRAPHY IN EVALUATION OF CORONORY ARTERY DISEASE IN DIABETIC PATEINTS

Thesis

Submitted for Partial fulfillment of Master Degree in Radiodiagnosis

By ATHEEL LAYTH HAMEED

M.B. B.Ch

Supervised by

Dr. HAZEM FAWZY ABOUL HAMAYED

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. AMR MAHMOUD ABDELSAMAD

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2013

Acknowledgment

First and above all, all thanks to **ALLAH** the merciful, the compassionate without his help, I could not finish this work.

Words stand short to express my respect and thanks to **Assist. Prof. Dr/ Hazem Fawzy Aboul Hamayed,** Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his support and help.

I would like to express my appreciation for **Dr/ Amr Mahmoud Abdelsamad,** *Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University*, for his precious remarks and continious back up and support.

I would like to thank **Dr. Sherif Maher,** Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University for his support and training in the field of work.

I am delighted to express my deep gratitude and cardinal thanks to all members of my family, for their love, care and everlasting support.

List of Content

	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	5
Case Presentation	131
Patients and Methods	151
Results	170
Discussion	200
Summary	213
Conclusion	216
References	217
Arabic Summary	

List of Tables

Table No.	Comment	Page No.
1	Anomalies of origin of coronary arteries	22
2	showing the relation of calcium score and the risk for cardiac events	158
3	Description of personal and family history among all cases	172
4	Description of medical history among all cases	173
5	Description of cases according to type and number of lesion among all cases	175
6	Description of lesions according to their sites and affected arteries	177
7	Description of sites of lesions among different affected arteries	179
8	Comparison between diabetics and non diabetics as regard personal data	180
9	Comparison between diabetics and non diabetics as regard BMI, HR and calcium score	182
10	Comparison between diabetics and non diabetics as regard HTN and Hyperlipedemia	184
11	Comparison between diabetics and non diabetics as regard site, number and type of lesions	185
12	Comparison between males and females as regard site and number of lesions	187
13	Comparison between HTN and Non HTN as regard site and number of lesions	188
14	Comparison between case with and without sedentary life as regard site and number of lesions	189

Table No.	Comment	Page No.	
15	Comparison between with and without		
	hyperlipedemia as regard site and number	190	
	of lesions		
	Comparison between with and without		
16	family history as regard site and number of	191	
	lesions		
17	Comparison between smoker and Non	192	
1 /	smoker as regard site and number of lesions	192	
18	Relation between age and site and number	193	
10	of lesions	173	
19	Relation between BMI and site and number	195	
	of lesions	193	
20	Comparison between Calcium score as	196	
	regard site and number of lesions	190	
21	Logistic Regression studying independent	199	
<u> </u>	factors on diffuse lesions	177	

List of Figures

Fig No.		
1	Origin of coronary arteries from Aorta	6
2	Normal course of LAD artery	
3	Septal and diagonal branches of LAD	9
4	Lcx artery and obtuse marginal branch	10
5	RIM arising between LAD and Lcx	11
6	RCA and its branches	13
7	RCA and PDA Branch	15
8	Right dominant circulation	17
9	Colored plate showing coronary arteries and veins	18
10	Segmental anatomy of coronary arteries	21
11	Anomalous origin of the right coronary artery (RCA)	24
12	Single coronary artery	25
13	LCA arising from the right coronary sinus	27
14	Duplication of LAD	30
15	Sequences of events that lead to atherosclerotic change	36
16	Atherosclerotic lesions with luminal thrombi	38
17	Plaque rupture	41
18	Thin cap fibroatheroma	42
19	Intra Intraplaque haemorrhage in fibroatheroma	43
20	Risk factors of coronary artery disease	45
21	Direction of remodeling and temporal development of plaques	49
22	Positive and negative arterial remodeling	51
23	Retrospective gating	77

Fig No.	Comment	Page No.
24	Axial images of the heart in patient with heart rate 77	79
25	Contrast-enhanced MSCT angiogram in 67 year old man with mean heart rate of 75 bpm during scanning	80
26	Bolus tracking technique for accurate timing to start scanning after beginning of contrast injection	87
27	MSCT angiography of the coronary arteries showing LAD artery using different reconstruction techniques	88
28	Pulsation (step ladder) artifacts	97
29	Stepladder artifact due to respiratory motion	106
30	Streak artifacts	109
31	Difficulties due to overlapping contrast- filled vascular structures	110
32	proximal LAD artery focal tight stenotic mixed lesion, mild atheroslcoertic changes of the proximal RCA, normal CX artery	112
33	diffuse atherosclerotic affection of the coronary arteries with multiple significant stenotic lesions and occluded segments	132
34	Showing focal segmental stenosis in the form of the mid segment of LAD.	134
35	Patient showing mild atherosclerotic changes in the form of focal affection of the proximal segments of RCA, CX and LAD arteries with mild stenotic effect of the lesion in proximal RCA.	136

Fig No.	Comment	Page No.
36	showing small calcific plaque at the proximal LAD artery causing mild stenosis otherwise, normal rest of coronary arteries	138
37	MPR images showing severe critical mixed lesion of the middle segment of the LAD artery otherwise, normal rest of the coronary arteries	140
38	MPR images showing significant ostial soft lesion of the high OM branch otherwise, normal rest of the coronary arteries	142
39	VRT and MPR images showing significant proximal mixed lesion of the second diagonal branch, diffuse affection of the proximal and middle segments of the LAD artery showing mild stenotic lesions	144
40	MPR images showing mild atherosclerotic changes of the LAD, significant stenotic lesions of the D2 and D3 branches	146
41	diffusely atherosclerotic LAD,CX with mild affection of D2 branch of LAD	148
42	AHA model of segmental coronary classification	150
43	Comorbidities with CAD	174
44	Type of lesion	176
45	Number of Lesions	176
46	Affected arteries	178
47	The mean age in diabetics and non diabetics	181
48	difference between calicium score in diabetics and non diabetics	183
49	Type of lesion	186

Fig No.	Comment	Page No.
50	Relationship between age and type of lesion	194
51	Relation between type of lesion and calcium score	197
52	Calcium score and number of lesions	198

List of Abbreviations

AHA	American Heart Association
BMI	Body Mass Index
bpm	Beat per Minute
CAD	Coronary Artery Disease
CHD	Coronary Heart Disease
CTCA	Computed Tomography Coronary Angiography
EBCT	Electron Beam Computed Tomography
HU	Hounsfield Unit
KV	Kilo Volt
LAD	Left Anterior Descending
LAO	Left Anterior Oblique
LCX	Left Circumflex
LMC	Left Main Coronary
LMT	Left Main Trunk
mAS	mill-Ampere Second
MDCT	Multidetector Computed Tomography
MIP	Maximum Intensity Projection
MPR	Multiplanar Reformation
MSCT	Multislice Computed Tomography
NPV	Negative Predictive Value
PDA	Posterior Descending Artery
PPV	Positive Predictive Value
RAO	Right Anterior Oblique

RCA	Right Coronary Artery
SD	Standard Deviation
VR	Volume Rendering

INTRODUCTION

The current epidemic of diabetes and its complications are on a dramatic rise both in the developed and the developing world. The number of Americans with diabetes has tripled from 1980 to 2007, reaching 17.4 million (*Schwartz et al.*, 2012). Coronary artery disease (CAD) is often asymptomatic in these patients until the onset of myocardial infarction (MI) or sudden cardiac death. The American College of Cardiology (ACC)/American Diabetes Association (ADA) recommends that cardiac testing be done irrespective of the presence of CAD symptoms in diabetics, with two or more atherogenic risk factors (*Chopra and Peter*, 2012).

Cardiovascular complications are the leading cause of morbidity and mortality in individuals with type 2 diabetes mellitus. The overall prevalence of coronary artery disease (CAD) has been reported to be as high as 60% in patients with diabetes referred for stress testing. Moreover, in patients with diabetes mellitus, CAD has frequently progressed to an advanced state before it becomes clinically manifest (*Schwartz et al.*, 2012).

Patients with diabetes have more extensive coronary disease than those without diabetes, resulting in more challenging percutaneous coronary intervention or surgical (coronary artery bypass graft) revascularization and more residual jeopardized myocardium (*Syed*, 2010).

Recently, multi-slice computed tomography (MSCT) has been proposed as an alternative imaging modality to evaluate patients with known or suspected CAD. MSCT allows anatomical, non-invasive imaging of the coronary arteries, including detection of coronary atherosclerosis by assessing the coronary artery calcium (CAC) burden (calcium score) and by performing non-invasive angiography. With the 64-slice MSCT, high sensitivity (up to 93%) and specificity (up to 96%) for the detection of significant (≥50% luminal narrowing) stenoses have been reported, and this technique has been weighted against conventional coronary angiography (CCA) (*Nasti et al.*, *2011*).

With the recent development of the latest models of Multislice CT (MSCT) such as 16, 64, 128 dual source, 256 and 320 slice CT scanners, the diagnostic accuracy of MSCT angiogram in CAD has significantly improved. The clinical application of CT angiogram is of enormous value

in the evaluation of patients who have a low likelihood of CAD . MSCT has further contributed to better image quality in cardiac imaging by the introduction of dual source CT in 2006, as the temporal resolution is shortened from 165 to 83 ms and heart rate dependence is eliminated. Several meta-analysis of 64 slice CT studies have reported an impressive range of results in sensitivity and specificity (99% sensitivity and 89% specificity in 28 studies) (Chopra and Peter, 2012).

Therefore MSCT, (especially with 64 slice or more CT), has developed as an effective alternative to invasive coronary angiography, for the detection of CAD. It can be used as a highly sensitive screening modality, that achieves high diagnostic accuracy for the detection of significant CAD (*Chopra and Peter*, 2012).