ROLE OF PET/CT IN DIAGNOSIS, STAGING AND FOLLOW UP OF RECURRENT COLORECTAL CANCER

Thesis submitted in Partial fulfillment of MD

Degree in Diagnostic Radiology

BY

Mohamed Fouad Abd El-Latif

(M.B.B.Ch.CAIRO UNIVERSITY)

(M Sc .CAIRO UNIVERSITY)

Supervised By

Prof. Dr. Hane Ahmed Sami

Professor of Diagnostic Radiology

Faculty of Medicine

Cairo University

Prof. Dr.Sherif Mohamed El-Refaei

Professor of nuclear medicine

Faculty of Medicine

Cairo University

Dr. Mohamed Abdel Latif Shahin

Lecturer of Radiodiagnosis

Faculty of medicine

Cairo University

Cairo University

2013

Abstract

PET/CT is developing a major role in assessing colorectal cancer. The information provided by PET/CT is likely to combine the best imaging features of both modalities and become the gold standard for staging in colorectal carcinoma. PET/CT proved significantly more accurate in restaging, and detection of metastatic as well as recurrent colorectal cancer. PET/CT is also useful in monitoring tumor response to therapy.

Key words: colorectal carcinoma; recurrence; 18F-FDG; PET/CT; staging; contrast

Acknowledgement

Dr. Hane Ahmed Sami professor of radiodiagnosis, Faculty of medicine, Cairo-University, for his support, guidance and care; he is my very special and dear professor.

Words could not express my great appreciation and respect to **Dr. Mohamed Abdel Latif Shahin** lecturer of Radiodiagnosis, Faculty of medicine, Cairo-University, for his assistance and concern throughout this work, providing this thesis with his scientific experience and constructive supervision.

I am also very grateful to **Dr. Sherif El Refai** professor of Nuclear Medicine, National Cancer Institute, Cairo-University, for his guidance and care.

I want to pay my deepest appreciation to **Alfa scan centre** for the greatest contribution and help in conducting this thesis.

Last, but not least, I would like to express my appreciation and thanks to my family for their understanding, patience and encouragement.

Table of Contents

			Page
Intro	duction	and aim of work	1
Revi	ew of lit	erature	
•	Anatomy	of the large intestine	5
	。 G	Gross anatomy	5
	。 H	listologic anatomy	8
	o B	slood supply	9
•	Patholog	y of colorectal cancer	12
	o R	tisk factors	12
	o P	athological types	15
	o T	umor spread	17
	。 S	itaging	19
	。 C	Other tumors	21
•	Physical	background and technical aspects of PET/CT	24
•	The role	of 18F-FDG PET/CT in colorectal cancer	47
	o D	Diagnosis	48
	o I I	nitial staging	49
	o D	Detection and restaging of recurrence	50
	o R	lole of PET/CT in radiotherapy planning	53
	o M	Onitoring tumor response to treatment	54
	o R	cole of PET/CT in colorectal hepatic metastasis	55
	o P	ET/CT colonography	59
	o I	nterpretation consideration of PET/CT in colorectal cancer	62
Patie	ents and	methods	65
Resu	ılts		72
Case	s presen	ntation	102
Disc	ussion		127
Sum	mary an	d recommendations	139
Refe	rences		142

List of Figures

Figure No.	Title of figure	Page No.
Figure 1	Anatomy of large intestine	5
Figure 2	Anatomy of the anal canal & rectum	8
Figure 3	Colon Layers	8
Figure 4	Blood supply of the large intestine	9
Figure 5	Venous drainage of the large intestine	10
Figure6	Lymphatic drainage of the large intestine	11
Figure 7	Gross features of cancer colon	15
Figure 8	Spread of cancer colon	18
Figure 9	TNM staging of cancer colon	21
Figure 10	Illustrative diagram of combined PET/CT scanner components	25
Figure 11	Photograph (side view) of a hybrid PET-CT scanner	27
Figure 12	Typical imaging protocol for combined PET/CT	27
Figure 13	Positron-electron annihilation reaction	28
Figure 14	Glucose and fluorodeoxyglucose structure	29
Figure 15	Uptake of FDG by cells	30
Figure 16	Bilinear scaling function	35
Figure 17	Mean positron range and annihilation angle blurring.	36
Figure 18	Coincidence imaging	36
Figure 19	Current commercial PET/CT scanners	37
Figure 20	Normal distribution of FDG uptake by body	40
Figure 21	Physiologic muscle activity	40
Figure 22	FDG uptake by bowel	41
Figure 24	Figure showing artifacts from oral contras medium	43 44
Figure 24 Figure 25	High-density metallic implants generate streaking artifacts Breathing artifacts	45
Figure 26	Mis-registration artifacts	45
Figure 27	False positive uptake by intensely enhancing left axillary vein	46
Figure 28	PET/CT image demonstrates intense focal uptake in a primary sigmoid colon mass.	48
Figure 29	Midline distal left primary colon carcinoma at an unusual location	49
Figure 30	Intense hypermetabolic activity in a cecal carcinoma primary lesion.	51
Figure 31	Focal intense radiotracer uptake in a subcentimeter left pelvic side wall lymph node is consistent with metastasis.	51
Figure 32	Diagnosis of colon carcinoma and liver metastases.	52
Figure 33	Axial fusion PET/CT demonstrates intense focal radiotracer uptake on the lateral margin of a radiofrequency ablation site in the liver.	53
Figure 34	A 33-year-old man undergoing ascending colon cancer resection two years ago.	56
Figure 35	Patient status post left hemicolectomy for colon cancer without change in CEA level.	56
Figure 36	Patient status post left hemicolectomy for colon cancer and increasing CEA level. PET was requested for restaging.	57
Figure 37	Axial contrast enhanced CT image demonstrated a tubulous polyp at the left colon flexure.	59
Figure 38	Axial contrast enhanced CT image demonstrated stenotic tumor site in the descending colon	59
Figure 39	percent of indications in group I	73
Figure 40	Percent of treatment in group I	74

	T	
Figure 41	Percent of lesions in group I	74
Figure 42	Percent of sites of local recurrence in group I	76
Figure 43	Percent of patients with hepatic metastases in group I	77
Figure 44	Percent of patients with metastatic lymph nodes in group I	79
Figure 45	Percent of patients with peritoneal lesions in group I	80
Figure 46	Percent of patients with pulmonary lesions in group I	81
Figure 47	Other different sites of other lesions in group I	83
Figure 48	Overall comparison between CECT&PETCT in group I	85
Figure 49	Treatment options in group II	86
Figure 50	Distribution of lesions in group II	87
Figure 51	Therapeutic responses after PET/CT exams in group II	87
Figure 52	Sites of local recurrence in group II	89
Figure 53	Therapeutic response of local recurrence in group II	90
Figure 54	Percent of patients with hepatic metastases in group II	91
Figure 55	Therapeutic response of hepatic metastases in group II	92
Figure 56	Percent of patients with lymph node metastases in group II	93
Figure 57	Therapeutic response of lymph nodes lesions in group II	94
Figure 58	Percent of patients with peritoneal lesions in group II	95
Figure 59	Therapeutic response of peritoneal lesions in group II	96
Figure 60	Percent of patients with pulmonary lesions in group I	97
Figure 61	Therapeutic response of pulmonary lesions in group II	98
Figure 62	Other metastatic sites in group II	99
Figure 63	The therapeutic response of CE CT & PET/CT in group II	101
Figures 64,65	Case 1	102
Figure 66	Case 1	103
Figure 67	Case 2	104
Figure 68	Case 3	106
Figure 69	Case 4	108
Figure 70	Case 4	109
Figure 71	Case 5	110
Figures 72,73	Case 5	111
Figures 74,75	Case6	112
Figure 76	Case 6	113
Figures 77,78,79	Case 7	114
Figure 80	Case 8	116
Figures 81,82	Case 8	117
Figure 83	Case 8	118
Figure 84	Case 8	119
Figure 85	Case9	120
Figure 86	Case 9	121
Figures 87&88	Case 9	122
Figure 89	Case 10	124
Figure 90	Case 10	125
Figure 91	Case 10	126

List of Tables

Table No.	Title	Page No.
Table 1	Dukes classification	20
Table 2	TNM Staging system for colon cancer	20
Table 3	Properties of various PET crystals	33
Table 4	Patients characteristics in group I	73
Table 5	Overall comparison between result of CE CT &PET/CT in group I	75
Table 6	Number of patients with local recurrence in group I	76
Table 7	Number of patients with hepatic lesions in group I	78
Table 8	Number of patients with lymph node lesions in group I	79
Table 9	Number of patients with peritoneal lesions in group I	81
Table 10	Number of patients with pulmonary lesions in group I	82
Table 11	Other different sites of lesions in group I	83
Table 12	Comparison between CECT & PET/CT in other different lesions sites in group I	83
Table 13	Overall comparison between CT&PET/CT in group I	84
Table 14	Patient's characteristics in group II.	86
Table 15	Different responses after PET/CT exams in group II	88
Table 16	Therapeutic response of local recurrence in group II	89
Table 17	Number of patients with hepatic lesions in group II	91
Table 18	Therapeutic response of hepatic lesions in group II	91
Table 19	Number of patients with Lymph nodes in group II	93
Table 20	Therapeutic response of lymph node lesions in group II	93
Table 21	Number of patients with peritoneal lesions in group II	95
Table 22	Therapeutic response of peritoneal lesions in group II	95
Table 23	Number of patients with pulmonary lesions in group II	97
Table 24	Therapeutic response of pulmonary lesions in group II	97
Table 25	Other different metastatic sites in group II	99
Table 26	Therapeutic response of other metastatic lesions in group II	100

List of Abbreviations

μ maps	Attenuation map
18F-FDG	¹⁸ F- FluoroDeoxyGlucose
AC/AL	Attenuation correction/Alignment
ACFs	Attenuation correction factors
CECT	Contrast enhanced computed tomography
CR	Complete Response
CRu	unconfirmed complete response
СТ	Computed Tomography
ESR	Erythrocyte sedimentation rate
F 18	Fluorine 18
FDG	FluoroDeoxyGlucose
GLUT	Glucose Transporters
GSO	Gadolinium Silicate
GTD	Greatest transverse diameter
H+	Hydrogen ion
H2 (F-18)	Hydrogen fluoride
IV	Intravenous
IWC	International Workshop Criteria
KeV	Kilo electron Volt
KV	Kilo Volt
LDH	Lactate dehydrogenase
LSO	Lutetium Oxyorthosilicate
MCi	Micro Curies
MeV	Mega electron Volt
Мо	Months
MRI	Magnetic Resonance Imaging
N	Neutron,
Р	Proton
PD	Progressive disease
PERCIST	PET Response Criteria in Solid Tumors
PET	Positron Emission Tomography
PET/CT	Positron Emission Tomography/ Computed Tomography
PFS	Progression Free Survival
PMTs	Photomultiplier tubes

PR	Partial Response
SD	Stable disease
RECIST	Response Evaluation Criteria in Solid Tumors
SLL	Small-cell lymphocytic lymphoma
SPD	Sum Of The Products Of The Greatest Diameters
ß-	Electron
ß+	Positron
SUV	Standardized Uptake Value
SUVavg	Average Standardized Uptake Value
SUVmax	Maximum Standardized Uptake Value
US	Ultrasound
WBC	White blood cells
WHO	World Health Organization
Wt	Weight
XRT	Radiotherapy
Υ	Photon

Introduction & Aim Of Work

Introduction

Colorectal cancer is the third leading cause of cancer worldwide; it accounts for a large number of tumor related deaths. As with all types of cancer, early diagnosis of colorectal cancer is the key for its cure. If diagnosed early, before it has metastasized, the disease is considered curable. If the cancer has already spread to distant organs, the long term survival is much lower *(Patrick et al., 2005)*.

Determining the stage of colorectal cancer often requires multi-modality, multi-step imaging approach. Optical colonoscopy represents the reference standard in terms of cancer detection and tissue sampling. However optical colonoscopy only offers an endo-luminal view. Complete "conventional" staging concepts require additional imaging procedures to assess potential metastatic spread to lymph nodes and solid organs (*Cohade C et al., 2003*).

Of these conventional imaging procedures, contrast enhanced computed tomography (CT) is the most common for both the abdomen and pelvis. However, CT offers only morphological data for the evaluation of tumor stage.Glucose analogue [18 F] fluorodeoxyglucose-positron emission tomography (FDG-PET) can display functional information and has been found to be accurate in the detection of colorectal cancer and its distant metastasis. However , based on its limited spatial resolution, FDG-PET often makes exact anatomical localization and demarcation of the lesion difficult *(Cohade C et al., 2003)*

A limitation of CT and other radiological imaging procedures pertains to their lack of functional data, which may render determination of lesion size, potential infiltration of adjacent organs or involvement of loco-regional lymph nodes difficult. [18F] fluoro-deoxyglucose (FDG)PET, on the other hand, is highly accurate when staging primary and recurrent colorectal cancer (Kantorova I et al., 2003).

The functional data of fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) have been reported to have an important complementary role in the detection of distant metastases and local recurrence and in the differentiation of tumoral and nontumoral masses in patients with colorectal cancer (*Kalff et al., 2003*).

Thus fusion of functional with morphological data may be of benefit for tumor staging. As a consequence, combined PET/CT scanner has been introduced into clinical practice. Its ability to detect and characterize malignant lesions, with advantages over morphology and function alone, has been documented for different tumours including colorectal cancer (Valk PE et al,.1999).

Whole-body PET/CT with integrated colonography is technically feasible for whole body staging in patients with colorectal cancer. This integrated protocol may be of substantial benefit in staging patients with colorectal cancer, focusing on patients with incomplete colonoscopy and those with small synchronous bowel lesions. (*Patrick et al., 2005*).

Recurrence of colorectal cancer occurs in about one-third of patients within the first 2 years after surgery. Before PET was introduced, it was extremely difficult to monitor for suspected recurrence. The other techniques available for staging and assessment of potential recurrences lack sensitivity and precision. Moreover, frequent non-conclusive investigations result in diagnostic and therapeutic delay. In many colorectal cancer patients, pelvic CT will demonstrate a suspicious mass, but cannot distinguish mass tumor recurrence from post-operative or post-radiation scar (Kamel IR et al., 2004).

Computed tomography (CT) and positron emission tomography (PET) are both well-established methods for the evaluation of patients with suspected recurrence. The results of CT depend on the site of recurrence, size and morphological appearance of the lesion. Because of the well-known high uptake of 18F-FDG in primary colorectal carcinomas and their recurrences, FDG-PET provides accurate information about changes in glucose metabolism; however, it is of limited value for anatomical localization and morphological depiction. Integrated imaging using both modalities improves the detection of recurrence. (Jana et al., 2006).

In post-operative patients, an elevated serum carcinoembryonic antigen (CEA) level suggests recurrent and/or metastatic disease. Resection of isolated metastases is associated with improve survival while multifocal metastatic lesions are associated with less favorable prognosis (*H. Jadvar and JA Parker., 2005*).

Early detection of recurrent colorectal carcinoma has become more important in the past decade, as the treatment options for localized disease have improved significantly. However, aggressive locoregional interventions (e.g. partial liver resections, radiofrequency ablation (RFA) of liver metastases, resections of pulmonary metastases) are as of yet considered futile in the presence of metastases elsewhere [1]. Therefore, detection of tumour sites throughout the body is needed with high sensitivity and specificity (*Vogel, et al. 2005*).

Whole body PET/CT imaging is said to be the most accurate diagnostic test for detection of recurrent colorectal cancer, and is a cost effective way to differentiate resectable from non-resectable disease (Kantorova et al., 2003).

18F-FDG PET has been shown to be highly accurate in the detection of recurrent and metastatic colorectal cancer. A PET scan has comparable

sensitivity to a CT scan for the detection of colorectal liver metastases but has superior sensitivity in the detection of extrahepatic disease, compared with CT, and changes the estimation of disease extent in over one third of patients. Several reports also indicate that PET can influence the management of patients with metastatic colorectal cancer (*Scott A.M et al,2008*).

Interpreting fused images provided more accurate diagnosis than interpreting CT, PET, or PET + CT images. This method of manually fusing separately obtained PET and CT images increased the diagnostic certainty for detecting colorectal cancer recurrence and decreased the number of equivocal cases. (Yuji et al., 2007).

Aim of work:

The aim of this study is to determine the following:

- Accuracy of FDG PET/CT compared with routinely used CT in detection of recurrent colorectal cancer.
- Accuracy of FDG PET/CT imaging compared with routinely used CT for assessment of therapeutic response of colorectal cancer.

Review
Of
Literature