LAPAROSCOPIC REPAIR OF DIAPHRAGMATIC DEFECTS IN INFANTS AND CHILDREN

THESIS

Submitted for Partial Fulfillment of Master Degree in General Surgery

By

Ibrahim Abd El Hameed Fayez

M.B.B.Ch

Faculty of Medicine - Cairo University

Supervised By

Prof. Dr. Khaled Ismail Zohdy

Professor of General and Pediatric Surgery Faculty of Medicine – Cairo University

Prof. Dr. Nabil Moustafa Dessouki

Professor of General and Pediatric Surgery Faculty of Medicine – Cairo University

Assist. Prof. Dr. Khaled Hussein Kamel

Assistant Professor of General and Pediatric Surgery Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University

> > 2009

بسم الله الرحمن الرحيم

(وقل رب زدنی علما)

(صدق الله العظيم) (سورة طه – ۱۱۶)

AKNOWLEDGMENTS

First of all, I thank **God** for his blessings and aid.

In the first place, I would like to thank **Prof. Dr. Khaled Ismail Zohdy**, Professor of General and Pediatric Surgery,
Faculty of Medicine, Cairo University for his meticulous
supervision and his kind support. I greatly appreciate his
efforts to guide me to accomplish this work.

I am also grateful to **Prof. Dr. Nabil Moustafa Dessouki**, Professor of General and Pediatric Surgery,
Faculty of Medicine, Cairo University who guided me in this
work for his close observation and his great pieces of
advice.

My special thanks to **Assistant Prof. Dr. Khaled Hussein Kamel**, Assistant Professor of General and Pediatric Surgery, Faculty of Medicine, Cairo University, for his continuous supervision, encouragement and valuable directions.

Contents

	Page
Introduction and Aim of the Work	1
Review of Literature :	
* Normal development and anatomy of diaphragm	7
* Pathophysiology, genetics and morbidity of CDH	29
* Diagnosis of congenital diaphragmatic defect	41
* Laparoscopy in pediatrics	56
* Laparoscopy versus thoracoscopy	76
Patients and Methods	82
Results	109
Discussion	124
Summary	133
Conclusion	136
References	138
Arabic Summary	

List of Tables

Table		Title	Page
Table (1)	:	Anatomic classifications of congenital diaphragmatic defects	27
Table (2)	:	Syndromes associated with congenital diaphragmatic hernia	33
Table (3)	:	Cannulae in Morgagni hernia	98
Table (4)	:	Cannulae in Bockdalek hernia	102
Table (5)	:	Six distribution in every diaphragmatic defects	113
Table (6)	:	Side distribution in every diaphragmatic defects	114
Table (7)	:	Hernia contents	115
Table (8)	:	Age distribution in the study of Liem compared with the current study	125

List of Figures

Figure		Title	Page
Figure (1)	•	Drawing illustrating development of the diaphragm	9
Figure (2)	•	A Sketch of a lateral view of an embryo (about 33 days)	10
Figure (3)	:	Schematic drawing of an embryo (about 24 days)	11
Figure (4)	•	Schematic drawing of transverse sections through embryos cranial to the septum transversum, illustrating successive stages in the separation of the pleural cavities from the pericardial cavity	12
Figure (5)	:	Diagrams illustrating extension of the pleural cavities into the body walls to form peripheral portions of the diaphragm, the costodiaphragmatic recesses, and the establishment of the characteristic dome-shaped configuration of the diaphragm	14
Figure (6)	:	Diagrams illustrating positional changes of the developing diaphragm	14
Figure (7)	:	Diagram showing structures passing through diaphragmatic apertures	19
Figure (8)	•	Anatomy of the diaphragm from the abdominal perspective, showing innervation	22
Figure (9)	:	a) Initial chest radiograph showing intrathoracic stomach misinterpreted as pleural effusion.b) Repeat radiograph following insertion of nasogastric tube and suction of gastric content showing tube in stomach	48

Figure (10)	:	Chest radiograph showing massively distended intrathoracic stomach misinterpreted as left pneumothorax	48
Figure (11)	:	Contrast study showing herniated colon (C) in right Hemithorax	49
Figure (12)	:	Morgagni hernia: retrosternal herniated colon confirmed by contrast study	49
Figure (13)	:	Sonography of this 21 week fetus demonstrated a left-sided congenital diaphragmatic hernia with stomach and a portion of the liver in the chest	52
Figure (14)	:	Computed tomographic scan showing bilateral Morgagni hernia	54
Figure (15)	:	Bochdalek hernia in 12-year-old male. CT scanogram. IV contrast-enhanced CT scans (a and b) reveal paraspinal herniation of the intestine and omentum with contrast enhancing omental vessels	54
Figure (16)	:	MRI: Defect in the left hemidiaphragm with herniation of the stomach and colon into the chest	55
Figure (17)	:	Abdominothoracic radiography showing intestinal loops herniating into left hemithorax	87
Figure (18)	:	Upper gastrointestinal tract series showing herniated small intestines in left hemithorax	89
Figure (19a)	:	Position of a small child, crew and monitors during Morgagni operation	93
Figure (19b)	:	Position of an old child, crew and monitors during Morgagni operation	94
Figure (20)	:	Operating room setup. Reversing Trendelenburg positioning facilitates reduction of abdominal viscera out of the chest in Bockdalek hernia and eventration	96

Figure (21)	:	Position of the trocars in Morgagni hernia repair	99
Figure (22)	:	Operative view of a Morgagni hernia. (A) Showing the defect during reduction of the contents. (B) Showing the defect after complete reduction of the contents. (C) Partial closure of the defect with 2/0 non-absorbable suture.	101
Figure (23)	:	Schematic of port placement in Bockdalek hernia	103
Figure (24)	:	Operative view of a Bockdalek hernia. (A) A left-sided CBH showing the hernia sac after reduction of the contents. (B) Completed left-sided CBH repair: A series of simple interrupted 2-0 Ethibond sutures closes the defect.	105
Figure (25)	:	Trocar placement, used for laparoscopic repair of Diaphragmatic eventration	107
Figure (26)	•	Operative view of a diaphragmatic eventration. (A) A left-sided diaphragm-matic eventration. (B) Showing partial plication of the diaphragm. (C) Showing complete plication with several rows of 2/0 non-absorbable sutures.	108
Figure (27)	:	Percentage of each diaphragmatic defect	110
Figure (28)	:	Age variations in neonatal group	111
Figure (29)	:	Age variations in infants and children	112
Figure (30)	:	Sex distributions	112
Figure (31)	:	Presenting symptoms	113
Figure (32)	:	Chest radiograph confirming tip of NG tube within left chest (arrow) (Bockdalek hernia)	118
Figure (33)	:	Normal chest radiograph three months post operation	119
Figure (34)	:	Chest roentgenogram (anteroposterior view) reveals a large left-sided diaphragmatic hernia with shift of the mediastinum and heart to the right side	120

Figure (35)	•	Chest roentgenogram (lateral view) shows the hernia to be retrosternal, thus indicating a diagnosis of Morgagni hernia	121
Figure (36)	•	Postoperative chest radiograph showing normal thoracic and abdominal appearance	122
Figure (37)	:	A and B, Chest X-ray before surgery (diaphragmatic eventration)	123
Figure (38)	:	Chest x-ray after diaphragmatic plication	123

List of Abbreviations

3D	:	Three Dimension
5PDE	:	5 Phosphodiesteras
СВС	:	Complete blood count
СВН	:	Congenital Bochdalek hernia
CDD	:	Congenital diaphragmatic defect
CDE	:	Congenital diaphragmatic eventration
CDH	:	Congenital diaphragmatic hernia
СМН	:	Congenital Morgagni hernia
CT scan	:	Computerized Tomography scan
ECMO	:	Extracorporeal membrane oxygenation
FGF10	:	Fibroblast growth factor 10
FRC	:	Functional residual capacity
GERD	:	Gastro-esophageal reflux disease
IAP	:	Intra-abdominal pressure
MCL	:	Mid-Clavicular-Line
MIS	:	Minimally invasive surgery
MRI	:	Magnetic resonance imaging
NICU	:	Neonatal intensive care unit
PA	:	Postero-anterior
PCP	:	Provoked controlled pneumothorax
PHTN	:	Pulmonary hypertension
PIP	:	Peak inspiratory pressure
PPHN	:	Persistent pulmonary hypertension in neonates
SEM	:	Standard error of the mean
US	:	Ultrasound

ABSTRACT

Congenital diaphragmatic defects discussed in the current study include, posterolateral defect (Bochdalek hernia), anterior retrosternal or parasternal defect (Morgagni hernia), and diaphragmatic eventration. Although they are usually asymptomatic, congenital diaphragmatic defects may be diagnosed early in the newborn period. In infants and older children, they are diagnosed incidentally or when they become symptomatic. The repair of congenital diaphragmatic defects is indicated in all stable newborns; and symptomatic infants and children.

The current study includes, 70 cases of congenital diaphragmatic defects, (35) Bochdalek and (15) Morgan hernia and 20 cases of diaphragmatic eventrations, repaired laparoscopically. The results of the operations were satisfactory with cure defined with radiological image after one month.

The use of laparoscopy in the repair procedure is advocated, because it is a safe and effective method. Benefits include that it provides an excellent view of the surgical filed, ease of execution, minimal surgical trauma, excellent cosmetic results, rapid recovery and shorter hospitalization stay.

Keywords:

Laparoscopy - Thoracoscopy - Neonate-children, congenital diaphragmatic defects-minimally invasive surgery.

INTRODUCTION

Surgical procedures are frequently performed on the diaphragm in children. The diseases associated with this organ may be either congenital or acquired.

A. Congenital.

- 1. Bochdalek Posterolateral diaphragmatic hernia and its variant.
- 2. Morgagni Anterior hernia.
- 3. Congenital eventration of the diaphragm.
- 4. Paraoesophageal hernia.

B. Acquired:

- 1. Phrenic nerve paralysis.
- 2. Traumatic rupture.

The development of minimally invasive surgery brought about a significant change in the surgical repair of these diaphragmatic conditions. Now there is more clinical experience available, in the near future most diaphragm-related problems will be amenable to Laparoscopic or thoracoscopic repair.

This study will concentrate on the approach to diaphragmatic defect through the use of the laparoscopic repair, and will concentrate also on the upper three congenital diaphragmatic defects. The current study dealt with the diaphragmatic defects (Morgagni and Bochdalek hernias and diaphragmatic eventration), other than hiatus hernia which was excluded as it was subjected to study and analysis with its type, variants and different modalities of management in another study running at the time parallel to the current study.

Bochdalek Posterolateral diaphragmatic hernia and its variants:

Background and development of surgical techniques:

Although in 1848 Vincent Bochdaleck, an anatomist, described two cases of diaphragmatic hernia, it was in 1902 that Heidenhaim first successfully repaired a diaphragmatic hernia in a 9- year old child.

Thirty-eight years later, Ladd and Gross successfully performed surgical operation of the defect in a 40- hour-old infant.

This was followed by an increase in survival until 1950s and 1970s when despite the fast development of neonatal intensive care units, an increase in mortality was observed. Improvement in prenatal diagnostic techniques with particular emphasis on sonography- served to emphasize this observation.

The medical community slowly came to the conclusion that what seem to be a simple anatomical defect, able to be surgically repaired, represented a complex embryological pathophisiology resulting in bilateral pulmonary hypoplasia with pulmonary hypertension (*Ferro*, 2002).

The concept of hidden mortality described in 1978 revealed that, in fact, the number of patients dying of this pathology was significantly higher than that observed in major referral centers, given that many patients died before birth or in the immediate perinatal period, and many of them died untreated.

Successful techniques such as high-frequency ventilation, nitric oxide and extra-corporeal membrane oxygenation (ECMO), which were implemented through the years for the treatment of severely affected neonates, failed to decrease the rate of mortality of this serious malformations that is currently observed in 50% of the affected cases.

Surgical techniques are divided into those designed to repair the defect before birth (fetal surgery) and postnatal techniques. In this study we concentrate on postnatal techniques via minimally invasive surgery (MIS).

Postnatal techniques, remained unchanged from the 1950s to the advent of minimally invasive surgery (MIS).

In 1995 Vander Zee described the laparoscopic surgical repair of a congential posterolateral hernia in a six month-old infant. Thereafter, viedo-assisted repair become the method of choice for non-severely affected patients in those centers highly specialized in these techniques (*Ferro*, 2002).

Morgagni Retrosternal hernia:

Embryology and incidence:

Morgagni hernia, also known as retrosternal or parasternal hernia, is located anterolaterally in the area embryologically belonging to the junction between the septum transversum and the chest wall. This condition