Assessment of peripheral vascular disease in patients on chronic hemodialysis using Toe/Brachial index

Thesis

Submitted for fulfillment of master degree in internal medicine

By

Usama Abdalla Moustafa

M.B.B.CH. Ain Shams University

Supervised by

Professor Dr. Khaled Hussein Abou Seif

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Walid Ahmed Bichari

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Mohamed Elghareb Abou-Elmaaty

Lecturer of Radio-diagosis
Faculty of Medicine, Ain Shams University

Faculty of medicine Ain Shams University 2010

Acknowledgement

First and foremost, I thank Allah, who gave me the strength to accomplish this work.

Words can not express my sincere gratitude and appreciation to *Professor Dr. Khaled Hussein Abou Seif*, Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University; I had the honor to work under his supervision, I appreciate his generous guidance, keen interest and precious time he offered me throughout this study. His scientific advices were kindly given to me and are beyond acknowledgement.

I would like to express my sincere indebtedness and profound gratitude to, *Dr. Walid Ahmed Bichari*, Lecturer of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for his continuous guidance, valuable suggestions and keen supervision throughout work.

I wish also to express my deep gratitude to *Dr. Mohamed Elghareb Abou-Elmaaty*, lecturer of radiology, Ain Shams University, for his continuous support, valuable remarks meticulous supervision and for offering me much of his time and effort throughout this study.

Usama Abdalla Moustafa

List of Abbreviations

ABI	Ankle Brachial Index
ACEI	Angiotensin Converting Enzyme Inhibitor
BMP	Bone Morphogenic Protein
Ca X Po4	Calcium Phosphorous
CACS	Coronary Artery Calcification Score
CAD	Coronary Artery Disease
cAMP	Cyclic Adenosine Monophosphate
CCA-IMT	Common Carotid Artery Intimal Media Thickness
CKD	Chronic Kidney Disease
CRP	C Reactive Protein
CVD	Cardiovascular Disease
DM	Diabetes Mellitus
DNHD	Daily Nocturnal Hemodialysis
DOPPS	Dialysis Outcomes and Practice Patterns Study
DRG	Diagnosis Related Group

e GFR	Estimated Glomerular Filtration Rate
EBCT	Electron Beam Computed Tomography
EKG	Electrocardiogram
ESKD	End Stage Kidney Disease
ESRD	End Stage Renal Disease
GFR	Glomerular Filtration Rate
GN	Glomerulonephritis
Нсу	Homocysteine
HDL-C	High Density Lipoprotein Cholesterol
HTN	Hypertension
IC	Intermittent Claudication
IL-6	Interleukin 6
iPTH	Intact Parathyroid Hormone
LDL-C	Low Density Lipoprotein Cholesterol
Lp(a)	Lipoprotein A
LVH	Left Ventricular Hypertrophy
MI	Myocardial Infarction

MSCT	Multi-Slice Computed Tomography
MTHF	Methyl Tetrahydrofolate
NCEP	National Cholesterol Education Program
NPV	Negative Predictive Value
PAD	Peripheral Arterial Disease
PAOD	Peripheral Arterial Occlusive Disease
PPG	Photo Plethysmograph
PPV	Positive Predictive Value
PVD	Peripheral Vascular Disease
PVR	Pulse Volume Recording
RAS	Renin Angiotensin System
RRT	Renal Replacement Therapy
SHARP	Study Of Heart And Renal Protection
SPP	Skin Perfusion Pressure
SPSS	Statistical Program for Social Science
TBI	Toe Brachial Index
TCOM	Transcutaneous Oxygen Monitoring

TCPO2	Transcutaneous Partial Oxygen Pressure
TGF-ß1	Transforming growth factor beta-1
TNF	Tumor Necrosing Factor
VSMC	Vascular Smooth Muscle Cells

List of Figures

	Title	Page
Figure 1	Adjusted risks of cardiovascular events stratified by level of e-GFR in patients from a vertically integrated health system followed over ~ 5 years	12
Figure 2	Relationship to observed micro- albuminuria and vascular disease	13
Figure 3	Renin Angiotensin System	19
Figure 4	Suggested treatment algorithm for the management of dyslipidemia by K/DOQI.	24
Figure 5	Distribution of the studied cases as regard dialysis duration	86
Figure 6	Etiology of Renal Failure	87
Figure 7	Comparison between PAD negative and positive groups as regard general data	91
Figure 8	Comparison between PAD negative and positive groups as dialysis duration	93
Figure 9	Comparison between PAD negative and positive groups as regard TBI	95
Figure 10	Correlation between TBI versus age	97

	Title	Page
Figure 11	ROC curve for TBI	101

List of Tables

	Title	Page
Table 1	Distribution of the studied cases as regard general data	85
Table 2	Distribution of the studied cases as regard dialysis duration	85
Table 3	Distribution of the studied cases as regard etiology of renal failure	87
Table 4	Comparison between studied group regarding diabetes mellitus	88
Table 5	Comparison between studied group regarding Hypertension	88
Table 6	Distribution of the studied cases as regard PAD symptoms	89
Table 7	Distribution of the studied cases as regard laboratory data	89
Table 8	comparison between studied group regarding the common carotid artery intima media thickness	90
Table 9	Comparison between PAD symptoms negative and positive groups as regard general data	90
Table 10	Comparison between PAD symptoms negative and positive groups as regard lipid profile	91

	Title	Page
Table 11	Comparison between PAD symptoms negative and positive groups as regard	92
	common carotid artery intimal thickness	
Table 12	Comparison between PAD negative and	92
	positive groups as regard duration of dialysis in years	
Table 13	Comparison between PAD negative and positive groups as regard HTN & DM	93
Table 14	Comparison between PAD negative and positive groups as regard laboratory data	94
Table 15	Comparison between PAD negative and positive groups as regard TBI	95
Table 16	Correlation between TBI versus general data among negative group	96
Table 17	Correlation between TBI versus general data among positive group	96
Table 18	Correlation between TBI versus laboratory data among negative group	98
Table 19	Correlation between TBI versus laboratory data among positive group	99
Table 20	Best cut off, Sensitivity, specificity, PPV, NPV and accuracy of TBI in prediction of PAD	100

Table of contents	Page
Introduction	1
Aim of the work	5
Review of literatures	7
Chapter (1): Cardiovascular risk factors in CKD and Hemodialysis patients	8
Chapter (2): Peripheral Vascular Disease in Hemo- dialysis Patients & Methods of diagnosis	51
Patients & Methods	75
Results	84
Discussion	102
Summary & Conclusion	113
Recommendations	117
References	120
Arabic summary	148

Introduction

Introduction

Peripheral arterial disease (PAD) is a chronic arterial occlusive disease of the lower extremities caused by atherosclerosis. Widespread atherosclerosis is common in patients with end-stage renal disease, defined as the requirement for renal replacement therapy. Also, diabetes mellitus and high blood pressure have been linked to an increased risk of PAD in most patients with end stage renal disease. [Rajagopalan S, et al., 2006].

Cardiovascular disease is common in chronic renal failure (CRF) patients and is responsible for more than 50% of their deaths. [US Renal Data System, Annual Data Report 2003].

At the same time, renal disease, even at the earliest stages, is a cardiovascular risk factor. [Go A, et al., 2004]

Among the different localizations of cardiovascular diseases, peripheral arterial disease (PAD) affecting the lower limbs has a higher morbidity. Nevertheless, despite its importance, there are few reports of this pathology in CRF

patients, and most of them, with a few exceptions, have been performed in dialysis patients. [García de Vinuesa S, et al., 2005 and O'Hare A, et al., 2004]

The reasons for the high incidence of cardiovascular mortality are incompletely understood, but in the large part cannot be explained by the traditional risk factors. [Leskinen Y, et al., 2002]

Inflammation, malnutrition, oxidative stress and abnormal mineral metabolism are risk factors for vascular disease specific to CKD. [Kalantar-Zadeh K, et al., 2003]

The importance of early PAD diagnosis is supported by studies showing that a high percentage of PAD patients will suffer intermittent claudication which will evolve to pain at rest and risk of tissue necrosis, and even to amputation. Moreover, renal patients with PAD showed a higher mortality rate than those not affected by PAD [Stenvinkel P, et al., 2003].

Consequently, it seems that the prevention of risk factors for the development of PAD may be beneficial and may prevent these adverse outcomes. Likewise, the early diagnosis of PAD makes it possible to act intensively on its risk factors [Criqui M, et al., 1992]

PAD had been diagnosed from the clinical records, physical examination and the Toe-Brachial Index test (TBI), which is the ratio of the resting systolic pressure in the artery of the toe to that of the brachial artery, measured by Doppler ultrasound. [Cimminiello C, et al., 2002]

TBI is a non-invasive test and has a higher sensitivity than the combination of a detailed clinical record and the careful physical examination of patients. Also it was found to be superior to the Ankle/Brachial Index (ABI) in the detection of peripheral vascular disease. The normal range for a TBI is considered to be an index > 0.65. If the TBI is below 0.65 there is reduced blood flow to the small vessels in the big toe. [Shimazaki M, et al., 2008]