PREDICTING WATER AND FERTILIZER DISTRIBUTION UNIFORMITY UNDER GATED PIPES IRRIGATION SYSTEM USING MATHEMATICAL MODEL

By

HANI MOHAMED IBRAHIM MEHANNA

B.Sc. Agric. Sc. (Agric. Eng.), Zagazig University, 1998 M.Sc. Agric. Sc. (Agric. Mech.), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Agricultural Mechanization)

Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

2010

Approval Sheet

PREDICTING WATER AND FERTILIZER DISTRIBUTION UNIFORMITY UNDER GATED PIPES IRRIGATION SYSTEM USING MATHEMATICAL MODEL

By

HANI MOHAMED IBRAHEM MEHANNA

B.Sc. Agric. Sc. (Agric. Eng.), Zagazig University, 1998 M.Sc. Agric. Sc. (Agric. Mech.), Ain Shams University, 200**5**

This thesis for Ph.D. degree has been approved by:		
Dr. Samir Mohamed Ismail		
Prof. of Agricultural Engineering, Faculty of Agric Alexandria University	ulture,	
Dr. Mahmoud Mohamed Hegazi		
Prof. Emeritus of Agricultural Engineering, Facult Agriculture, Ain Shams University	y of	
Dr. Abdel-Ghany Mohamed El-Gindy		
Prof. Emeritus of Agricultural Engineering, Facult Agriculture, Ain Shams University	y of	

Date of Examination: 27 / 1 / 2010

PREDICTING WATER AND FERTILIZER DISTRIBUTION UNIFORMITY UNDER GATED PIPES IRRIGATION SYSTEM USING MATHEMATICAL MODEL

By

HANI MOHAMED IBRAHEM MEHANNA

B.Sc. Agric. Sc. (Agric. Eng.), Zagazig University, 1998 M.Sc. Agric. Sc. (Agric. Mech.), Ain Shams University, 2005

Under the supervision of:

Dr. Abdel Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Khaled Faran Taher El-Bagoury

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Moursy Mohamed Hussein

Research Prof. Emeritus of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, Agricultural and Biological Division, National Research Center

التنبؤ بانتظامية توزيع المياه والأسمدة تحت نظام الري بالأنابيب المبوبة باستخدام نموذج رياضي

رسالة مقدمه من

هاني محمد إبراهيم مهنا

بكالوريوس علوم زراعية (هندسة زراعية) ، جامعة الزقازيق ، 1998 ماجستير علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 2005

للحصول على درجة دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

قسم الهندسة الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

التنبؤ بانتظامية توزيع المياه والأسمدة تحت نظام الري بالأنابيب المبوبة باستخدام نموذج رياضي

رسالة مقدمه من

هاني محمد إبراهيم مهنا

بكالوريوس علوم زراعية (هندسة زراعية) ، جامعة الزقازيق ، 1998 ماجستير علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 2005

للحصول علي درجة دكتور فلسفه في العلوم الزراعية (ميكنة زراعية)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

 د. سمير محمد اسماعيل أستاذ الهندسة الزراعية، كلية الزارعة، جامعة الأسكندرية
 د. محمود محمد حجازي أستاذ الهندسة الزراعية الزارعة، جامعة عين شمس
 د. عبد الغني محمد الجندي أستاذ الهندسة الزر اعبة المتفرغ، كلية الزراعة، حامعة عين شمس

تاريخ المناقشة: 27 / 1 / 2010

رسالة دكتوراه

اسم الطالب: هاني محمد إبراهيم مهنا

عنوان الرسالة: التنبو بانتظامية توزيع المياه والأسمدة تحت نظام الري

بالأنابيب المبوبة باستخدام نموذج رياضي

اسم الدرجــة: دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

لجنة الاشراف:

د.عبد الغنى محمد الجندى

أستاذ الهندسة الزراعية المتفرغ ، قسم الهندسة الزراعية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د.خالد فران طاهر الباجوري

أستاذ الهندسة الزراعية المساعد ، قسم الهندسة الزراعية ، كلية الزراعة ، جامعة عين شمس دمد مرسى محمد حسين

أستاذ باحث العلاقات المائية والرى الحقلي المتفرغ ، قسم العلاقات المائية والرى الحقلي ، الشعبة الزراعية والبيولوجية ، المركز القومي للبحوث

تاريخ البحث 11 / 9 / 2006

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 1/27 2010/

موافقة مجلس الكلية موافقة مجلس الجامعة 2010 / / 2010 /

ABSTRACT

Hani Mohamed Ibrahim Mehanna: Predicting Water and Fertilizer Distribution Uniformity Under Gated Pipes Irrigation System Using Mathematical Model. Unpublished Ph.D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2010.

Surface irrigation is considered one of the most common and important irrigation systems, and will remain as one of the most extensive methods used for irrigation in the old valley in Egypt. Surface irrigation uses ditches and canals to carry irrigation water from the source of supply to one or more farms. For that, surface irrigation in Egypt has earned a reputation for being inefficient and wasteful for water and land. Although well designed and managed furrow irrigated systems have the potential to operate at application efficiencies above 90 %. The aim of this study was to maximize water and fertilizer efficiencies under surface irrigation system (furrow) based on simulation model techniques. Therefore, different simulation models (G-Pipe, SIRMOD, and SALTMED) had been used for evaluation processes. This work has been carried out at the Experimental Farm of the Faculty of Agriculture, Ain Shams University, Kalubia Governorate to represent the old alluvial soil of the Nile Delta during 2007 and 2008 soybean (Giza 22) summer growing seasons.

Generally, results could be summarized in the following points: (1) using of simulation models is a good aid tool to maximize the net return of irrigation and fertigation practices under Egyptian clay loam soil conditions. (2) using of G-Pipe, SIRMOD, and SALTMED simulation models is acceptable for predicting water distribution uniformity for gated pipes irrigation system, water distribution uniformity for furrow irrigation, and salinity distribution profile, respectively, after irrigation and fertigation practices under Egyptian clay loam soil conditions for determining the appropriate practices of irrigation to maximize irrigation water unit productivity, and (3) using of 0.2 % field slope and 75 m furrow length are the optimal field conditions for maximize soybean

growth and productivity under the Egyptian clay loam soil conditions which determined by using SIRMOD simulation model for example of using simulation models to decide the optimal procedures of field management to maximize productivity.

Key Words: Simulation model - Water distribution uniformity - Soil salinity distribution - Alluvial soil - Nile Delta Valley - Soybean - G-Pipe - SIRMOD - SALTMED - Gated pipes.

ACKNOWLEDGMENT

I would like to express my sincere appreciation to principal supervisor **Prof. Dr. Abdel Ghany M. El-Gindy**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor), for his support, valuable suggestions and frequent discussions throughout the study.

I wish to express my deep gratitude to co-supervisor **Prof. Dr. Mohamed Moursy Mohamed Hussein,** Water Relations and Field Irrigation Department, Agricultural and Biological Division, National Research Center, for his keen interest, encouragement and help.

I thank co-supervisor **Dr. Khaled Faran Taher EL-Bagoury**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for his valuable help and advices throughout this work. I am indebted to **Prof. Dr. Abdel Salam El-Noemani**, Water Relations and Field Irrigation Department, Agricultural and Biological Division, National Research Center.

My very warm thanks go to the members of the Department of Agricultural Engineering, Fac. of Agric, Ain Shams Univ. for their support and personal encouragement, as well as the members of the Department of Water Relations and Field Irrigation, National Research Centre, which I belong.

Warm thanks are due to spirit of my mother and my family (my father, my wife, my wife's mother and father and my two children) for their continuous encouragement and support.

CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	vi
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
III. MATERIALS AND METHODS	33
IV. RESULTS AND DISSCUSION	44
4.1. Validation of surface irrigation hydraulic analysis	
simulation models	44
4.1.1. Validation of G-Pipe simulation model	44
a. Validation of G-Pipe simulation model for 12 m	
length of gated pipeline (16 gates with 0.7 m spacing)	
under zero slope of the pipeline	45
b. Validation of G-Pipe simulation model for 6 m length of	•
gated pipeline (8 gates with 0.7 m spacing) under zero	
slope of the pipeline	50
c. Validation of G-Pipe simulation model for 12 m and 6	
m lengths of gated pipeline (16 and 8 gates with 0.7 m	
spacing) under 0.5 % slope of the pipeline	53
4.1.2. Validation of SIRMOD simulation model	59
a. Validation of SIRMOD simulation model under the	
effect of 0.2 % field slope	60
b. Validation of SIRMOD simulation model under the	
effect of 0.5 % field slope	69
4.1.3. Validation of SALTMED model	73
a. Comparison between the measured and predicted soil	
salinity profile (EC, ds/m)	73
4.2. Soybean crop growth and yield	83
a. The effect of field slope treatments on plants growth	83
b. The effect of furrow length treatments on plants	

growth	83
c. Effect of the interaction between field slope and furrow	
length treatments on soybean growth	
parameters	86
d. Effect of field slope treatments on soybean yield and its	
related parameters	86
e. Effect of furrow length treatments on soybean yield and	
its related parameters	86
f. Effect of the interaction between field slope and furrow	
length treatments on soybean yield and its related	
parameters	89
V. SUMMARY	91
VI. REFERENCES.	97
VII. ANNEX	104
VIII. ARABIC SUMMARY	

LIST OF TABLES

Title	Page
Table (1): Some physical properties of soil profile at Shalaqan site	32
Table (2): Some chemical properties of soil profile at Shalaqan	
site	32
Table (3): Some chemical data of irrigation water at Shalaqan site	33
Table (4):Unit width flow cross section of furrows.	40
Table (5):Inputs of G-Pipe Simulation Model.	44
Table (6): Standard deviation (σ) , probability of t test value at	
level 5 %, and significance of the relationship between measured	
and predicted (by using G-pipe simulation model) outflow from	
gates (q, 1/s) and head at gates (h, m) under different slopes and	
lengths of the gated pipes irrigation system	49
Table (7):Calculated and predicted water distribution uniformities	
along the gated pipeline of gated pipes irrigation system	59
Table (8):Inputs of SIRMOD simulation model screens	61
Table (9-a): Standard deviation (σ) , probability of t test value at	
level 5 %, and significance of the relationship between measured	
and predicted advance time (min) under different experimental	
treatments at the first and the third irrigations of soybean growing	
season	66
Table (9-b): Standard deviation (σ) , probability of t test value at	
level 5 %, and significance of the relationship between measured	
and predicted recession time (min) under different experimental	
treatments at the first and the third irrigations of soybean growing	
season	67
Table (9-c): Standard deviation (σ) , probability of t test value at	
level 5 %, and significance of the relationship between calculated	
and predicted infiltration depth (m) under different experimental	
treatments at the first and the third irrigations of soybean growing	
season	68

Table (10): Inputs of SALTMED model
Table (11): Standard deviation (σ) of the relationship between
neasured and predicted soil salinity (EC, ds/m) under different
experimental treatments at two days after the second and the third
rrigations of soybean growing season
Table (12-a):Effect of furrow lengths treatments on the growth
parameters of soybean plants. (As a combined analysis between
he two growing seasons)
Table (12-b):Effect of furrow lengths treatments on the growth
parameters of soybean plants. (As a combined analysis between
the two growing
seasons)
Table (13-a):Effect of the interaction between field slope and
furrow lengths treatments on the growth parameters of soybean
plants (as a combined analysis between the two growing
seasons)
Table (13-b): Effect of the interaction between field slope and
furrow lengths treatments on the growth parameters of soybean
plants (as a combined analysis between the two growing
seasons)
Table (14):Effect of furrow length on soybean crop yield and its
related parameters. (As a combined analysis of the two growing
seasons)
Table (15):Effect of the interaction between filed slope and
furrow length on soybean crop yield and its related parameters.
(As a combined analysis of the two growing
seasons)

LIST OF FIGURES

Title	Page
Fig.1: Idealized energy diagram at an outlet	11
Fig. 2: Kc of soybean crop all over the growing season	29
Fig. 3: The layout of the experiment treatments	34
Fig. 4: Flow chart components of G-Pipe simulation model	
program for simulating outflow and pressure at gates along	
the pipeline of gated pipes irrigation system	37
Fig. 5: Calibration tank for gated pipe	38
Fig. 6: Locally manufactured furrow profile meter	39
Fig. 7: Flow chart components of SIRMOD simulation model	
program for simulating the hydraulics of surface irrigation	
(furrow) at field level	42
Fig. 8: Flow chart components of SALTMED simulation	
model program for simulating moisture and salinity	
distributions in soil profile affected by irrigation system and	
soil type	43
Fig. 9: Measured and predicted discharge from every gate (q,	
lit/sec) along gated pipeline (12 m length and 16 gates) under	
zero slope of pipeline by using two different G-pipe	
simulation model as a primary conditions (total outflow or	
head after valve inputs)	46
Fig. 10: Relationship between measured and predicted	
outflow from gates (q, lit/sec) along gated pipeline (12 m	
length and 16 gates) under zero slope of pipeline by using two	
different G-pipe simulation models as primary conditions	
(total outflow (a) or head after valve (b) inputs)	46
Fig. 11: Measured and predicted head at every gate (h, m)	
along gated pipeline (12 m length and 16 gates) under zero	
slope of pipeline by using two different G-pipe simulation	
model as a primary conditions (total outflow or head after	

valve inputs)	17
Fig. 12: Relationship between measured and predicted head	
at every gate (h, m) along gated pipeline (12 m length and 16	
gates) under zero slope of pipeline by using two different G-	
pipe simulation model as a primary conditions (total outflow	
(a) or head after valve (b) inputs)	17
Fig. 13: Measured and predicted outflow from gates (q,	
lit/sec) along gated pipeline (6 m length and 8 gate) under	
zero slope of pipeline by using two different G-pipe	
simulation model as a primary conditions (total outflow or	
head after valve inputs)5	1
Fig. 14: Relationship between measured and predicted	
outflow from gates (q, lit/sec) along gated pipeline (6 m	
length and 8 gate) under zero slope of pipeline by using two	
different G-pipe simulation model as a primary conditions	
(total outflow (a) or head after valve (b) inputs)	51
Fig. 15: Measured and predicted head at every gate (h, m)	
along gated pipeline (6 m length and 8 gate) under zero slope	
of pipeline by using two different G-pipe simulation model as	
a primary conditions (total outflow or head after valve	
inputs)5	52
Fig. 16: Relationship between measured and predicted head	
at every gate (h, m) along gated pipeline (6 m length and 8	
gate) under zero slope of pipeline by using two different G-	
pipe simulation model as a primary conditions (total outflow	
(a) or head after valve (b) inputs)	52
Fig. 17: Measured and predicted outflow from gates (q,	
lit/sec) along gated pipeline (12 m length and 16 gate) under	
0.5% slope of pipeline by using two different G-pipe	
simulation model as a primary conditions (total outflow or	
head after valve inputs)	5
Fig. 18: Relationship between measured and predicted	