

FORMULATION OF NEW MODIFIED ALKYD RESINS AND THEIR APPLICATION IN THE FIELD OF SURFACE COATINGS

A Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the master of Science

By Mohamedy El Sayed Abd El Hady

Supervisors

Prof. Dr. Alyaa Abou sheaishaa Shalaby

Prof. Dr. Farag Abd El Hai Ahmed

Dr. Manal Mohamed El-Shahawi

APPROVAL SHEET FOR SUBMISSION

Title of M.Sc. Thesis:

FORMULATION OF NEW MODIFIED ALKYD RESINS AND THEIR APPLICATION IN THE FIELD OF SURFACE COATINGS

Name of the candidate:

Mohamedy El Sayed Abd El Hady

The Supervisors have approved this thesis for submission:

Thesis Advisors:

Approved

Prof. Dr. Alyaa Abou sheaishaa Shalaby

Professor of Organic Chemistry Department of Chemistry Faculty of Science, Ain Shams University

Prof .Dr. Farag Abd El Hai Ahmed

Professor of Applied Chemistry Department of Chemistry Faculty of Science, Al-Azhar University

Dr. Manal Mohamed El-Shahawi

Assistant Professor of Organic Chemistry Department of Chemistry Faculty of Science, Ain Shams University

Head of Chemistry Department

Prof. Dr. Ibrahim H. A. Badr

Acknowledgment

First thanks to **ALLAH** for supporting me in everything in my life, whose magnificent help was the main factor in accomplishing this work.

I wish to express my thanks and gratitude to my thesis advisors Prof. Dr. Alyaa Abou Sheaishaa Shalaby, Prof. Dr. Farag Abd El Hai Ahmed and Dr. Manal Mohamed El-Shahawi, whom suggested and supervised every step in the present work and who revised every phrase in the written text.

I wish to express my thanks to SWISSCHM research and development lab. chemists and staff.

Finally, I would to express my thanks to all staff of chemistry departments of both Ain Shams University and Al-Azhar University.

CONTENTS

Title	Page
List of tables	vi
List of figures	ix
List of abbreviations	xii
Abstract	xvii
Summary	xviii
Aim of work	xxiii
Introduction	
1. Paints and coatings as high-tech products	1
1.1 Definitions	1
1.1.1 The binder	2
1.1.2 Colourants	2
1.1.3 Fillers (extenders)	3
1.1.4 Solvent	3
1.1.5 Additives	4
1.2. Coating and future technologies	4
1.2.1 Nanotechnology	
1.2.2 Green technologies	7
High solid coatings	9
Heavy duty waterborne coatings	9
Types of waterborne coatings	10
Water-soluble paints	10
Water-dispersible paints or colloidal coatings	10
Emulsions/latex paints	11
Water-based alkyds	11
Advantages of waterborne coatings	12
Powder coatings	12
Electron beam and UV-curable coatings	13
2. Coating properties	15
2.1 Solidification of coatings	15
Physical drying	16
Chemical curing	17
2.2 Adhesion	17
Adsorption	18

Title	Page
Chemical bonding	20
Mechanical interlocking	21
3. Alkyd Paint	24
3.1 History of alkyd	24
3.2 Alkyd synthesis methods	26
4. Corrosion protection coatings	30
4.1. Function principales	30
4.1.1 Eletrochemistry of corrosion inhibition	30
4.1.2 Metal oxide formation	32
4.1.3 Cathodic protection	32
4.1.4 Passivation and conversion coating	33
4.2. Types of corrosion	33
4.2.1 Uniform corrosion	33
4.2.2 Localized corrosion	33
5. Science today - coatings tomorrow	38
5.1. Alkyd recent studies	38
5.2. The future of corrosion protective coatings	76
Experimental Work	
Material used	99
Methods and techiques	102
1- Preparation of N,N-bis(2-hydroxyethyl)thiophene- carboxamide (HETCA) 3	102
2- Preparation of N,N-bis(2-hydroxyethyl)furan-2-carboxamide (HEFCA) 4	102
3- Preparation of morpholino(thiophen-2-yl)methanone 5	103
4- Preparation of furan-2-yl(morpholino)methanone 6	103
5- Preparation of soya bean alkyd resin via solvent process	104
i- Preparation of blank alkyd resins (without modification)	104
ii- Preparation of modified alkyd resins based on soya bean oil fatty acid	104
Alkyd constants	110
Evaluation methods	119
Test panel preparation	119
Determination of touch drying time, hard drying time and full curing time at room temperature	119

Title	Page
Non volatile of varnish	121
Water resistance	121
Alkali resistance	122
Acid resistance	123
Solvent resistance	123
Viscosity measurement	124
Color	124
Measurement of film thickness	125
Fineness measurements	125
Pencil hardness / Impact test	126
Adhesion	127
Specular gloss	129
Flexibility (bending) test by Mandrel cone	130
Preparation of steel panel for testing purpose	130
Corrosion Resistance	131
Determination of degree of blistering	131
Determination of degree of rusting	132
Determination of painted specimens for (Scribe Failure)	133
Results and Discussion	
Synthesis of Modifiers: N,N-bis(2-hydroxyethyl)thiophene-	
2-carboxamide (HETCA) 3 and N,N-bis(2-hydroxyethyl)	134
furan-2-carboxamide (HEFCA) 4. Synthesis of corrosion inhibitors: Morpholino(thiophen-2-	
yl)methanone 5 and Morpholino(furan-2-yl)methanone 6.	137
Preparations and characteristics of modified alkyd resins.	140
Evaluation Studies	143
Varnish Characteristics	144
Film Performance	150
A-Drying characteristics	150
B- Color	151
C-The viscosity	151
D- Water, acid, alkali and solvent resistance	151
Extensive evaluation studies	157
Mechanical properties of dried films	166
Evaluation of modified alkyd resins via corrosion resistance	175

Title	Page
Conclusions	192
References	194

List of tables

No.	Table	
1	The partial replacement of glycerol equivalent	105
2	Reaction time for formation of HETCA-modified alkyd resins	107
3	Reaction time for formation of HEFCA-modified alkyd resins	108
4	Formulations of 0% excess-OH HETCA-modified alkyd resins	111
5	Formulations of 10% excess-OH HETCA-modified alkyd resins	112
6	Formulations of 20% excess-OH HETCA-modified alkyd resins	113
7	Formulations of 30% excess-OH HETCA-modified alkyd resins	114
8	Formulations of 0% excess-OH HEFCA-modified alkyd resins	115
9	Formulations of 10% excess-OH HEFCA-modified alkyd resins	116
10	Formulations of 20% excess-OH HEFCA-modified alkyd resins	117
11	Formulations of 30% excess-OH HEFCA-modified alkyd resins	118
12	Adhesion classification according to ASTM 3359 - 09e2	128
13	The percentage of drier mixture	143
14	Varnish formulation	144
15	Color, viscosity and air drying characteristics of HETCA-modified alkyd resins	145
16	Color, viscosity and air drying characteristics of HEFCA-modified alkyd resins	146
17	Stoving drying time characteristics of HETCA-Modified alkyd resins	148
18	Stoving drying time characteristics of HEFCA-Modified alkyd resins	149
19	Water and acid resistance data for HETCA-modified alkyd resins	153

No.	Table	Page
20	Water and acid resistance data for HEFCA-modified alkyd resins	154
21	Solvent and alkali resistance data for HETCA-modified alkyd resins	155
22	Solvent and alkali resistance data for HEFCA-modified alkyd resins	156
23	Extensive evaluation of Water resistance data of HETCA-modified alkyd resins	158
24	Extensive evaluation of Water resistance data of HEFCA-modified alkyd resins	159
25	Extensive evaluation of solvent resistance data of HETCA-modified alkyd resins	160
26	Extensive evaluation of solvent resistance data of HEFCA-modified alkyd resins	161
27	Extensive evaluation of acid resistance data of HETCA-modified alkyd resins	162
28	Extensive evaluation of acid resistance data of HEFCA-modified alkyd resins	163
29	Extensive evaluation of alkali resistance data of HETCA-modified alkyd resins	164
30	Extensive evaluation of alkali resistance data of HEFCA-modified alkyd resins	165
31	Formulation of zinc phosphate primer	167
32	Film thickness and gloss of HETCA-modified alkyd based varnishes and primers	169
33	Film thickness and gloss of HEFCA-modified alkyd based varnishes and primers	170
34	Flexibility and adhesion of HETCA-modified alkyd based varnishes and primers	171
35	Flexibility and adhesion of HEFCA-modified alkyd based varnishes and primers	172
36	Impact and pencil hardness of HETCA-modified alkyd based varnishes and primers	173
37	Impact and pencil hardness of HEFCA-modified alkyd based varnishes and primers	174

No.	Table	Page
38	Evaluation the corrosion resistance of HETCA-modified alkyd based Zinc phosphate primer	177
39	Evaluation the corrosion resistance of HEFCA-modified alkyd based Zinc phosphate primer	178
40	Evaluation of the prepared corrosion inhibitor morpholino(thiophen-2-yl)methanone <u>5</u> with standard commercial alkyd based Zinc phosphate primer	179
41	Table (41): Evaluation of the prepared corrosion inhibitor morpholino(furan-2-yl)methanone 6 with standard commercial alkyd based Zinc phosphate primer	179
42	Evaluation of the prepared corrosion inhibitor morpholino(thiophen-2-yl)methanone <u>5</u> with some prepared modified alkyd based Zinc phosphate primer (synergism)	180
43	Evaluation of the prepared corrosion inhibitor morpholino(furan-2-yl)methanone <u>6</u> with some prepared modified alkyd based Zinc phosphate primer (synergism)	180

List of figures

No.	Figure	Page
1	Colourants	
2	Core shell polymerization	6
3	Good and poor wetting of a paint film	18
4	Organosilane adhesion promoters provide a strong "chemical bridge" between the paint film and the substrate	
5	Illustration showing (a) Tortuous interface between two adhering materials with rough surfaces and (b) between two adherends with smooth surfaces.	23
6	Transesterification of glycerol and soybean oil to form monoglyceride	27
7	Polymerization of monoglyceride and phthalic anhydride to an alkyd resin	27
8	Polymerization of alkyd resin using the fatty acid process	28
9	Acidolysis reaction to modify triglyceride oil with isophthalic acid	29
10	Electrochemical reactions of corrosion process	31
11	Measuring the time-dependent mechanical properties of alkyd resin by quartz crystal microbalance	60
12	Hybrid alkyd-acrylic polymer	74
13	"Smart" Functional coatings for corrosion protection	84
14	Effect of CNTs % on impedance of alkyd resin	96
15	Preparation of N,N-bis(2-hydroxyethyl)thiophene-2-carboxamide (HETCA) 3	135
16	Preparation of N,N-bis(2-hydroxyethyl)furan-2-carboxamide (HEFCA) 4	135
17	FTIR spectrum of N,N-bis(2-hydroxyethyl)thiophene-2-carboxamide (HETCA) 3	136
18	FTIR spectra of N,N-bis(2-hydroxyethyl)thiophene-2-carboxamide (HETCA) 4	136
19	Reaction time of morpholino(thiophen-2-yl)methanone 5	138
20	Reaction time of morpholino(furan-2-yl)methanone 6	138
21	FTIR spectrum of morpholino(thiophen-2-yl)methanone 5	139
22	FTIR spectrum of morpholino(furan-2-yl)methanone 6	139

No.	Figure	Page
23	Reaction time for the preparation of HETCA-modified alkyd resins	142
24	Reaction time for the preparation of HEFCA-modified alkyd resins	142
25	The viscosity of HETCA-modified alkyd resins	147
26	The viscosity of HEFCA-modified alkyd resins	147
27	Zinc phosphate primer based on HETCA-modified alkyd resins after 10 days	181
28	Zinc phosphate primer based on HEFCA-modified alkyd resins after 10 days	181
29	Zinc phosphate primer based on standard commercial alkyd resin and prepared corrosion inhibitors after 10 days	182
30	Zinc phosphate primer based on T32 and F32 alkyd resins and prepared corrosion inhibitors after 10 days	182
31	Zinc phosphate primer based on HETCA-modified alkyd resins after month	183
32	Zinc phosphate primer based on HEFCA-modified alkyd resins after month	183
33	Zinc phosphate primer based on standard commercial alkyd resin with prepared corrosion inhibitors after month	184
34	Zinc phosphate primer based on T32 and F32 alkyd resins with the prepared corrosion inhibitors after month	184
35	Scribe failure of zinc phosphate primer based on HETCA-modified alkyd resins after month	185
36	Scribe failure of Zinc phosphate primer based on HEFCA-modified alkyd resins after month	185
37	Scribe failure of zinc phosphate primer based on standard commercial alkyd resin with the prepared corrosion inhibitors after month	186
38	Scribe failure of zinc phosphate primer based on T32 and F32 alkyd resins with the prepared corrosion inhibitors after month	186
39	Rust grade of the panels of zinc phosphate primer based on HETCA-modified alkyd resins after month	187

No.	Figure	Page
40	Rust grade of the panels of zinc phosphate primer based on HEFCA-modified alkyd resins after month	187
41	Rust grade of bare panels of zinc phosphate primer based on standard commercial alkyd resin with the prepared corrosion inhibitors after month	188
42	Rust grade of bare panels of zinc phosphate primer based on T32 and F32 alkyd resins with the prepared corrosion inhibitors after month	188
43	Scribe failure of best samples of zinc phosphate primer after month	189

List of Abbreviations

a	Air dried film
A.V.	Acid value
AA2024-T3	Type of Aluminum alloy
AC	Acrylic resin
AFM	atomic force microscopy
AR	Alkyd resin
ASTM	American Society for Testing and Materials specification
ATR-FTIR	Attenuated total reflection in conjunction with infrared spectroscopy
AV	Acid value
AZ31B	Type of magnesium alloy
b.p.	Boiling point
BPO	Benzoyl peroxide
BTA	Benzotriazole
BTESPT	Bis-[triethoxysilylpropyl]tetrasulfide
BTSA	2-benzothiazolythio-succinic acid
BZ	Benzoate
C_c	Coating capacitance,
Ce(dbp) ₃	Cerium dibutyl phosphate
CHVE	Cyclohexyl vinyl ether
CNTs	Carbon nano-tubes
¹³ C NMR	¹³ C nuclear magnetic resonance
DEA	Diethanolamine
DFT	Dry film thickness
DIN	German Institute for Standardization (D eutsches I nstitut für N ormung)
DLS	Dynamic light scattering
DMA	Dynamic mechanical analysis
D _p	Degree of polymerization
DSC	Differential scanning calorimetry
e ₀	Total equivalents percent at start of reaction

	Continued List of abbreviations
e _A	Total number of acid and anhydride equivalents
e _B	Total number of hydroxyl equivalents
EB	Electron beam
Ecorr	Corrosion potential
EDX	Energy-dispersive X-ray spectroscopy
EIS	Electrochemical impedance spectroscopy
EN	European standardization
Eq.w.	Equivalent weight
Ex	Excellent (almost no film defect)
F	Functionality
F	Fair (partially attacked)
FAME	Fatty acid methyl esters
FESEM	Field emission scanning electron microscope
FTIR	Fourier transform infrared spectroscopy
G	Glycerin
G	Good (very slight attack)
GC-MS	Gas chromatography-mass spectrometry
GNPs	Graphene nano-platelets
GO	Graphene oxide nanosheets
GPC	Gel permeation chromatography
GPEr	Hydroxyl oligomers
GPTMS	(3-glycidoxypropyl)methyldiethoxysilane
h	Hour(s)
¹ H NMR	Proton nuclear magnetic resonance
H ₂ O off	Water millimeters at which the reaction will be completed
HAP	Hazardous air pollutants
HBAs	Hyperbranched alkyd resins
HBP	Hyperbranched polyester polyol of fourth generation
HD	Hard dry
HEFCA	N,N-bis(2-hydroxyethyl)furan-2-carboxamide 4
HETCA	N,N-bis(2-hydroxyethyl)thiophene-2-carboxamide 3