PHYTOCHEMICAL AND BIOLOGICAL STUDIES ON CERTAIN PLANTS BELONGING TO FAMILY BIGNONIACEAE

Thesis Submitted to

Faculty of Pharmacy Ain Shams University

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy in Pharmaceutical Sciences

(In Pharmacognosy)

By

Nada Mohamed Mahmoud Mohamed Mostafa

B. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2004
M. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2010

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbassia, Cairo, Egypt
2014

Under the supervision of

Abdel-Nasser B. Singab Ph.D.

Professor of Pharmacognosy

Dean of Faculty of Pharmacy

Ain Shams University

Omayma A. Eldahshan Ph.D.

Associate Professor of Pharmacognosy
Faculty of Pharmacy
Ain Shams University

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbassia, Cairo, Egypt
2014

تحت إشراف:

الاستاذ الدكتور/ عبد الناصر بدوى سنجاب أستاذ العقاقير وعميد كلية الصيدلة جامعة عين شمس

الدكتورة / أميمة عبد الكريم الدهشان

أستاذ العقاقير المساعد كلية الصيدلة — جامعة عين شمس

قسم العقاقير كلية الصيدلة – جامعة عين شمس القاهرة جمهورية مصر العربية ٢٠١٤

دراسة فيتوكيميائية و بيولوجية لبعض النباتات التي تنتمي للعائلة البجنونية

رسالة مقدمة إلى
كلية الصيدلة- جامعة عين شمس
لإستكمال متطلبات الحصول علي درجة دكتوراه الفلسفة في العلوم
الصيدلية
(في العقاقير)

من

ندی محمد محمود محمد مصطفی

المدرس المساعد في قسم العقاقير - كلية الصيدلة - جامعة عين شمس بكالوريوس في العلوم الصيدلية (٢٠٠٤) ماجستير في العلوم الصيدلية (٢٠١٠)

قسم العقاقير كلية الصيدلة – جامعة عين شمس القاهرة جمهورية مصر العربية ٢٠١٤

List of Figures

Figure No.		Page
1.	Miscellaneous compounds isolated from <i>P. venusta</i> .	48
2.	Tree of J. acutifolia, Bignoniaceae.	57
3.	Compound leaf of <i>J. acutifolia</i> .	57
4.	Bark of J. acutifolia.	58
5.	Inflorescence of <i>J. acutifolia</i> .	58
6.	Fruits (capsules) of <i>J. acutifolia</i> .	59
7.	Two-celled capsule of <i>J. acutifolia</i> with dark brown seeds.	59
8.	Leaves of <i>P. venusta</i> .	63
9.	Leaves showing tendrils of <i>P. venusta</i> .	63
10.	Inflorescence of <i>P. venusta</i> .	64
11.	The percentage inhibition of DPPH by different concentrations of <i>J. acutifolia</i> leaves extract.	96
12.	The percentage inhibition of DPPH by different concentrations of <i>P. venusta</i> leaves extract.	96
13.	The percentage inhibition of DPPH by different concentrations of vitamin E.	97
14.	Effect of <i>J. acutifolia</i> leaves extract on TAM-induced alteration in rat serum ALT (A) and AST (B) levels.	102

15.	Effect of <i>P. venusta</i> leaves extract on TAM-induced alteration in rat serum ALT (A) and AST (B) levels.	103
16.	Effect of <i>J. acutifolia</i> leaves extract (JAL) on TAM-induced alteration in rat hepatic TBARS.	105
17.	Effect of <i>P. venusta</i> leaves extract (PVL) on TAM-induced alteration in rat hepatic TBARS.	105
18.	Effect of J . $acutifolia$ leaves extract (JAL) on TAM-induced alteration in rat hepatic TNF- α level.	107
19.	Effect of P . $venusta$ leaves extract (PVL) on TAM-induced alteration in rat hepatic TNF- α level.	107
20.	Effect of <i>J. acutifolia</i> leaves extract (JAL) on STZ-induced alteration in rat FBG level.	113
21.	Effect of <i>P. venusta</i> leaves extract (PVL) on STZ-induced alteration in rat FBG level.	113
22.	Effect of <i>J. acutifolia</i> leaves extract (JAL) on STZ-induced alteration in rat serum insulin level.	116
23.	Effect of <i>P. venusta</i> leaves extract (PVL) on STZ-induced alteration in rat serum insulin level.	116
24.	In vitro antimicrobial activities of J. acutifolia flowers essential oil.	123
25.	<i>In vitro</i> antimicrobial activities of <i>J. acutifolia</i> leaves essential oil and hexane extract.	125

LIST OF FIGURES

26.	Total ion chromatogram of <i>J. acutifolia</i> flowers essential oil.	132
27.	Total ion chromatogram of <i>J. acutifolia</i> leaves essential oil.	138
28.	Total ion chromatogram of <i>J. acutifolia</i> leaves hexane extract.	139
29.	¹ H-NMR of compound $\underline{1}$: Luteolin-7- <i>O</i> -β-D- ⁴ C_I -glucuronopyranoside.	155
30.	¹ H-NMR of compound 2 : Luteolin-7- O -β-D- ⁴ C_I -glucopyranoside.	159
31.	¹ H-NMR of compound <u>3</u> : 6, 7 Dihydroxycoumarin, Aesculetin.	162
32.	(-)-ESI-MS spectrum of compound <u>3</u> : 6, 7 Dihydroxycoumarin, Aesculetin.	163
33.	¹ H-NMR of compound <u>4</u> : 5, 7, 3', 4'-tetrahydroxyflavone, luteolin.	166
34.	DEPT-90 spectrum of compound 4 : 5, 7, 3', 4'-tetrahydroxyflavone, luteolin	174
35.	(-)-ESI-MS spectrum of compound <u>4</u> : 5, 7, 3', 4'-tetrahydroxyflavone, luteolin.	۱٦٨
36.	¹ H-NMR of compound <u>5</u> : Verbascoside (Acetoside).	174
37.	¹³ C-NMR of compound <u>5</u> : Verbascoside (Acetoside).	175
38.	(-)-ESI-MS spectral data of compound <u>5</u> : Verbascoside (Acetoside).	١٧٦
39.	¹ H-NMR of compound 6 : Luteolin-7- O -β-D- ⁴ C_I -glucuronide methyl ester.	180
40.	(-)-ESI-MS spectrum of compound $\underline{6}$: Luteolin-7- O -β-D- 4C_1 -glucuronide methyl ester.	١٨١

41.	¹ H-NMR of compound $\underline{7}$: Apigenin-7- <i>O</i> -β-D- ⁴ C_I -glucuronide methyl ester.	185
42.	DEPT-135 of compound $\underline{7}$: Apigenin-7- <i>O</i> -β-D- 4 C ₁ -glucuronide methyl ester.	186
43.	¹ H-NMR of compound 8 : (5, 7, 4'- Trihydroxyflavone), Apigenin.	190
44.	HMBC correlations of compound $\underline{9}$: Kaempferolyl (6 \rightarrow 8") apigenin.	195
45.	UV spectrum (MeOH) and NaOMe shifting reagent of compound $\underline{9}$: Kaempferolyl (6 \rightarrow 8") apigenin.	195
46.	¹ H-NMR of compound 9 : Kaempferolyl (6→8") apigenin, DMSO- d_6 .	196
47.	¹ H-NMR of compound 9 : Kaempferolyl (6→8") apigenin, DMSO- d_6 + D ₂ O.	197
48.	APT spectrum of compound 9 : Kaempferolyl (6→8") apigenin.	198
49.	COSY of compound 9 : Kaempferolyl (6→8") apigenin.	199
50.	HMBC compound 9 : Kaempferolyl (6→8") apigenin.	200
51.	HMBC of the aromatic region of compound $\underline{9}$: Kaempferolyl (6 \rightarrow 8") apigenin.	201
52.	HSQC of compound 9 : Kaempferolyl (6→8") apigenin.	7.7
53.	HSQC of the aromatic region of compound $\underline{9}$: Kaempferolyl (6 \rightarrow 8") apigenin.	7.7
54.	(+)-ESI-MS spectrum of compound 9 : Kaempferolyl (6→8") apigenin.	204
55.	FT-IR spectral data of compound <u>10</u> : β-sitosterol.	208

56.	¹ H-NMR of compound <u>10</u> : β-sitosterol.	209
57.	Compounds isolated from J. acutifolia leaves extracts.	۲١.
58.	Compounds tentatively identified from <i>J. acutifolia</i> leaves hexane extract using GC-MS.	211
59.	DPPH-TLC showing radical scavenging activity of the isolated compounds.	213
60.	Cytotoxic effect of kaempferolyl $(6\rightarrow 8")$ apigenin on MCF-7 using MTT cell viability assay.	215
61.	LC-MS chromatogram of the total methanol extract of <i>J. acutifolia</i> leaves.	222
62.	Calibration curve of standard verbascoside.	223
63.	HPLC chromatogram of reference standard (verbascoside), at concentrations (A) 0.1; (B) 0.2 and (C) 0.3 mg/mL.	227
64.	HPLC chromatogram of J . acutifolia leaves methanol extract (1mg/mL).	228
65.	HPLC chromatogram of spiked <i>J. acutifolia</i> extract with known concentration of the standard (verbascoside).	228
66.	Scheme for the extraction and chromatographic fractions of <i>J. acutifolia</i> leaves extracts.	7 £ .

List of Tables

Table No.		Page
1.	Traditional uses reported for Jacaranda species.	8
2.	Reported biological activities of Jacaranda species.	16
3.	Flavones and flavonols isolated from <i>Jacaranda</i> species.	19
4.	Flavanones, chalcones and isoflavones isolated from <i>Jacaranda</i> species.	23
5.	Phenylpropanoids, neolignan and their derivatives isolated from <i>Jacaranda</i> species.	26
6.	Quinones and their derivatives isolated from <i>Jacaranda</i> species.	29
7.	Triterpenes and sterols isolated from <i>Jacaranda</i> species.	32
8.	Fatty acids isolated from Jacaranda species.	36
9.	Reported biological activities of <i>P. venusta</i>	42
10.	Triterpenes and sterols isolated from <i>P. venusta</i> .	44
11.	Flavonoids isolated from <i>P. venusta</i> .	46
12.	Structures of some fatty acids identified in <i>P. venusta</i> flowers.	47
13.	The different mass spectrometric conditions.	90

14.	Time table for the HPLC gradient elution process using 0.2% phosphoric acid and acetonitrile as solvents.	91
15.	Changes of percentage inhibition of DPPH by different concentrations of <i>J. acutifolia</i> , <i>P. venusta</i> leaves extracts and vitamin E.	95
16.	Effect of <i>J. acutifolia</i> (JAL) and <i>P. venusta</i> (PVL) leaves extracts on TAM-induced alterations in serum ALT and AST activities.	101
17.	Effect of <i>J. acutifolia</i> (JAL) and <i>P. venusta</i> (PVL) leaves extracts on TAM-induced alterations in hepatic TBARS.	104
18.	Effect of <i>J. acutifolia</i> and <i>P. venusta</i> leaves extracts on TAM-induced alterations in hepatic TNF- α level.	106
19.	Influence of oral intake of <i>J. acutifolia</i> (JAL), <i>P. venusta</i> (PVL) leaves extracts (20 mg kg ⁻¹ day ⁻¹), or GLB (20 mg kg ⁻¹ day ⁻¹) for 7 Days to STZ-diabetic rats on fasting blood glucose (FBG).	112
20.	Influence of oral intake of <i>J. acutifolia</i> (JAL), <i>P. venusta</i> (PVL) leaves extracts (20 mg kg ⁻¹ day ⁻¹), or GLB (20 mg kg ⁻¹ day ⁻¹) for 7 Days to STZ-diabetic rats on serum insulin level.	115
21.	Antimicrobial activity of the essential oil of <i>J. acutifolia</i> flowers by agar well diffusion method.	122
22.	In vitro antimicrobial activities of <i>J. acutifolia</i> leaves essential oil and hexane extract against different pathogens using agar well diffusion method.	124

23.	Minimum inhibitory concentration of <i>J. acutifolia</i> flowers and leaves essential oil as well as leaves hexane extract against different pathogens using agar diffusion method.	126
24.	Antimicrobial potency of 1 mg sample of essential oil or hexane extract compared to standard antibiotics against different microorganisms.	127
25.	Some physical characters of <i>J. acutifolia</i> essential oils of flowers and leaves as well as the hexane extract of the leaves.	129
26.	Chemical composition of the essential oil of J . <i>acutifolia</i> flowers.	130
27.	Representatives of different classes of volatile compounds of <i>J. acutifolia</i> flowers and their mass fragmentation.	133
28.	Chemical composition of the essential oil of <i>J. acutifolia</i> leaves.	136
29.	Representatives of different classes of volatile compounds of <i>J. acutifolia</i> leaves and their mass fragmentation.	140
30.	Results of phytochemical screening of leaves of <i>J. acutifolia</i> and <i>P. venusta</i> family Bignoniaceae.	147
31.	Results of the column chromatographic fractionation of the aqueous methanol extract of the leaves of <i>J. acutifolia</i> , family Bignoniaceae.	150
32.	Results of column chromatographic analysis of fraction II.	152

33.	Chromatographic, UV and ¹ H-NMR spectral data compound <u>1</u> .	154
34.	Chromatographic, UV and ¹ H-NMR spectral data compound <u>2</u> .	158
35.	Chromatographic, UV, ¹ H-NMR and (-)-ESI-MS spectral data of compound <u>3</u> .	161
36.	Chromatographic, UV, ¹ H-NMR, DEPT-90 and (-)-ESI-MS spectral data of compound <u>4</u> .	165
37.	Results of column chromatographic analysis of fraction III.	170
38.	Chromatographic, UV, ¹ H-NMR, ¹³ C-NMR and (-)-ESI-MS spectral data of compound <u>5</u> .	173
39.	Chromatographic, UV, ¹ H-NMR, DEPT-90, DEPT-135 and (-)-ESI-MS spectral data of compound 6 .	179
40.	Chromatographic, UV, ¹ H-NMR and DEPT-135 spectral data of compound <u>7</u> .	184
41.	Chromatographic, UV and ¹ H-NMR spectral data of compound 8 .	189
42.	¹ H-NMR, APT and HMBC spectral data of compound $\underline{9}$ measured in DMSO- d_6 .	194
43.	Chromatographic, FT-IR and ¹ H-NMR spectral data of compound <u>10</u> .	207
44.	Accuracy results for the determination of verbascoside in <i>J. acutifolia</i> leaves by HPLC.	225
45.	Validation parameters of the developed HPLC method for quantification of verbascoside.	230

LIST OF TABLES

LIST OF TABLES