Molecular cloning and immunogenicity evaluation of rotavirus structural proteins as recombinant vaccine

Thesis Submitted for the Degree of Master of Science in Microbiology

By **Saeed Mostafa Ameen Mostafa**B.Sc. Microbiology-2005

Supervisors

Prof. Dr. Ahmed B. Barakat Prof. Dr. Gamila El-Sayed El-Taweel

Professor of Microbiology Professor of Water and Wastewater
Faculty of Science Water Pollution Research Department
Ain Shams University National Research Centre (NRC)

Dr. Hossam El-deen Ahmed Ghanem

Lecturer of Microbiology
Faculty of Science
Ain Shams University

Department of Microbiology Faculty of Science Ain Shams University 2010

Approval Sheet

Title of Thesis: Molecular cloning and immunogenicity evaluation of rotavirus structural proteins as recombinant vaccine

Degree: M.Sc. in Microbiology

Name of student: Saeed Mostafa Ameen Mostafa

-Supervisors committee

1- Prof. Dr. Ahmed B. Barakat

Professor of Microbiology
Faculty of Science
Ain Shams University

2- Prof. Dr. Gamila El-Sayed El-Taweel

Professor of Water and Wastewater Microbiology Water Pollution Research Department National Research Centre (NRC)

3-Dr. Hossam El-deen Ahmed Ghanem

Lecturer of Microbiology Faculty of Science Ain Shams University

-Examination committee

1- Prof. Dr. Ahmed B. Barakat

Professor of Microbiology Faculty of Science Ain Shams University

2- Prof. Dr. Mostafa M. Kamel

Professor of biomedical technology and genetic engineering

National Research Centre (NRC)

3- Prof. Dr. Aly F. Mohamed

Professor of applied researches VACSERA Company

Date of examination: 23/5/2010 Approval date: 23/5/2010

University Council approved: / / .

I declare that this thesis has been composed by myself and the work of which it is a record has been done by myself. It has not been previously submitted for any degree at this or any other university.

Signed

Saeed Mostafa Ameen

ACKNOWLEDGEMENT

All braise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

My deepest thanks and gratitude for Prof. Dr. Ahmed B. Barakat, Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his kind supervision and guidance of this work, support and valuable advice. I wish to express my sincere thanks and gratitude to Prof. Dr. Gamela El-Sayed El-Taweel, Professor of Bacteriology, Water Pollution Research Department, National Research Centre for her sincere supervision.

I am greatly expressing my sincere appreciation to Dr. Yasser E. Shahein, Assistant Professor of Biotechnology, Molecular Biology Department, National Research Center for providing all the facilities, endless help, innovation supervision and suggestions which were a great asset to this work. I'm also grateful and thankful to his support and continuous encouragement.

I would like also to thank with deepest respect to Dr. Amr El-Sayed El-Hakeem, researcher of Biochemistry, Molecular Biology Department, National Research Centre for his kind advice and unlimited assistance, he offered me a lot of his experience during the period of research.

My deepest respect and appreciation to Dr. Hossam Eldeen Ahmed, Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his kind supervision. I'm so thankful to Dr. Waled M. El-senousy, Assistant Professor of Virology, Water Pollution Research Department, National Research Centre for his help during the period of the research.

Thanks are also given to the staff of Water Pollution Research Department, National Research Center, for the offered facilities and materials that made this work possible.

Special thanks to my family for their continuous encouragement and providing all the suitable conditions to finish this work.

LIST OF CONTENTS

Contents	Page
List of contents	I
List of abbreviations	V
List of tables	VIII
List of figures	IX
Chapter I- Introduction and Aim of the work	1-8
- Introduction	1
- Aim of the work	8
Chapter II- Review of literature	9-64
1. Rotavirus	9
1.1. Rotavirus Characteristics	9
1.1.1. Morphology and Classification	9
1.1.2. Viral Proteins of Rotavirus	12
1.1.3. Global Distribution of Rotavirus Strains	15
1.1.4. Epidemiology and Routes of Transmission	16
1.1.5. Pathogenesis and Immunity	18
1.2.Rotavirus Treatment	20
1.2.1. Oral Rehydration Therapy	
1.2.2. Intravenous Fluids	21
1.3.Rotavirus Vaccine	
1.3.1. Live Attenuated Vaccines	
1.3.1.1. Trials for Rotavirus Live Attenuated	
Vaccines	24
1.3.2. Inactivated Vaccines	26
1.3.2.1. Trials for Rotavirus Inactivated Vaccines	26
1.3.3. Toxoid Vaccines	28
1.3.4. Conjugate Vaccines	29
1.3.5. Recombinant Vector Vaccines	30
1.3.6. DNA Vaccines	31
1.3.6.1. Trials for Rotavirus DNA Vaccines	32
1.3.7. Subunit Vaccines	36
1.3.7.1. Trials for Rotavirus Subunit Vaccines	37
1.3.7.1.1. VLPs Rotavirus Subunit Vaccines	37
1.3.7.1.2. VP6 Rotavirus Subunit Vaccines	46

Contents	Page
1.3.7.1.2.1. VP6 Rotavirus Subunit Vaccines using plant	
as expression system	47
1.3.7.1.2.2. VP6 Rotavirus Subunit Vaccines using	
Bacteria as expression system	48
1.3.7.1.2.3. VP6 Rotavirus Subunit Vaccines using	
mammal cells as bioreactors	55
1.3.7.1.3. VP7 Rotavirus Subunit Vaccines	56
1.3.7.1.3.1. VP7 Rotavirus Subunit Vaccines using	
plant as expression system	56
1.3.7.1.4. VP4 Rotavirus Subunit Vaccines	58
1.3.7.1.5. NSP4 Rotavirus Subunit Vaccines	61
Chapter III- Materials and Methods	65-99
1. Virus seed stock preparation	65
1.1. Cell culture materials	65
1.1.1. Cells	65
1.1.2. Supplemented media, enzymes and buffers	65
1.2. Virus strain	67
1.3. Conditions of Cell culture and Virus seed stock	
preparation	67
2. Ribonucleic acid (RNA) extraction	68
3. PCR Amplification of rotavirus VP6 RNA fragment	69
3.1. Synthesis of complementary DNA (cDNA)	69
3.2. Rotavirus VP6 first PCR (Polymerase chain	
reaction)	71
3.3. DNA Gel electrophoresis	72
3.4. Rotavirus VP6 nested PCR	73
3.5. Purification of the nested PCR product	74
3.6. Sequencing of the purified nested PCR products	75
3.7. Rotavirus VP6 nested PCR with restriction sites	76
4. Purification of the PCR product	77
5. Enzymatic digestion of the DNA	79
6. Ligation of the DNA fragment	80
7. Transformation in bacterial cell	80
7.1. Preparation of permanent competent cells	80
7.1.1. Preparation of buffers	80
7.1.2. preparation of competent BL21 (DE3)	81

Contents	Page
E. coli cells	
7.2. Transformation of competent cells	82
7.3. Detection of the transformation with the	
appropriate insert	83
8. Expression and purification of cloned rotavirus VP6	
gene	86
8.1. Expression of rotavirus VP6 gene	86
8.2. Purification of the expression product	87
8.2.1. Purification of the expression product under	
native conditions	87
8.2.2. Purification of the expression product under	
denaturing conditions	89
9. Protein determination	90
9.1. Sodium dodecyl sulfate - polyacrylamide gel	
electrophoresis (SDS-PAGE)	91
9.1.1. Preparation of Buffers and gel	92
9.1.2. Electrophoresis conditions	94
9.2. Molecular weight determination	94
10. Immunogenecity evaluation of the purified	
recombinant protein	95
10.1. Preparation of rabbit anti-rVP6 antisera	95
10.2. Detection of rabbit anti-rVP6 antisera	96
11. Evaluation of immune serum neutralizing efficacy in	
the reduction of infectious rotavirus titer	98
Chapter IV- Results	100-124
1. Nested PCR amplification of the target rotavirus VP6	
fragment	100
2. Sequencing of the target rotavirus VP6 fragment	102
3. Confirmation of PCR amplification of the target	
rotavirus VP6 fragment with restriction sites	104
4. Purification of the digested target rotavirus VP6	
fragment	106
5. Cloning and sequencing of the target rotavirus VP6	
fragment	108
6. Recombinant pET30b-VP6 before and after digestion	110
7. Nested RT-PCR for confirmation of the transformation	110
of the recombinant pET30b-VP6	112

LIST OF CONTENTS

Contents	Page
8. Sequences of the 155 bp fragment before and after	
cloning	114
9. Expression of rotavirus VP6 clones in <i>E. coli</i>	115
10. Purification of the expressed product	117
11. <i>In vivo</i> evaluation of immunogenicity of the	
recombinant rotavirus VP6 protein	119
12. Evaluation of immune serum neutralizing efficacy in	
the reduction of infectious rotavirus titer	122
Chapter V- Discussion	125-135
Chapter VI- Summary	136-142
Chapter VII- Conclusions	143
References	144-170
Arabic summary	1

LIST OF ABBREVIATIONS

aa	Amino Acid
AIDS	Acquired Immunodeficiency Syndrome
AlP	Aluminum Phosphate
APS	Ammonium Persulfate Solution
ASC	Antibody-Secreting Cell
ATCC	American Type Culture Collection
BALB/c	Inbred strain of mouse
BCG	Bacillus Calmette-Guerin
BP	Base Pair
BSA	Bovine Serum Albumin
CBB	Coomassie Blue G-250
CC-RT-	Cell Culture-Reverse Transcriptase- Polymerase
PCR	Chain Reaction
CD region	Coding region
cDNA	complementary DNA
CT	Cholera Toxin
CTL	Cytotoxic T-Lymphocyte
DEPC	DiEthyl PyroCarbonate
DMEM	Dulbecco's Modification of Eagle's Medium
DNA	Deoxyribonucleic Acid
dNTP'S	deoxynucleotide Trihosphates
E. coli	Escherichia coli
EDIM	Epizootic Diarrhea of Infant Mice
EDTA	EthyleneDiamine Tetraacetic Acid
EIA	Antigen Enzyme Immunoassays
ELISA	Enzyme Linked Immunosorbent Assay
ELISPOT	Enzyme-Linked Immunospot

FBS	Fetal Bovine Serum
G-protein	Glycoprotein
GSK	GlaxoSmithKline
HCV	Hepatitis C Virus
HEPES	N-2-Hydroxy Ethyl Piperazine-N-2-Ethane Sulphonic acid
Hib	Haemophilus influenzae type B
HIV	Human Immunodeficiency Virus
HRV	Human Rotavirus
IFA	Incomplete Freund's Adjuvant
IFN	Interferon
IgG	Immunoglobulin G
I/M	Intramuscular Injection
IMAC	Immobilized Metal Affinity Chromatography
I/N	Intranasal Injection
I/P	Intraperitoneal Injection
I-RRV	Inactivated Rhesus Rotavirus
L3	MonooLeate/Lauric Acid
LB Broth	Luria-Bertani Broth
LT	heat-Labile Toxin
MBP	Maltose-Binding Protein
MHC	Major Histocompatibility Complex
MMLV	Moloney Murine Leukemia Virus
MOPS	3-(N-Morpholino) PropaneSulfonic acid
MPL	MonoPhosphoryl Lipid
mRNA	Messenger Ribonucleic Acid
NGM	Non Glycosylated Mutant
Ni-NTA	Nickel- Tri Acetic acid- treated Sepharose
N-MAbs	Neutralizing Monoclonal Antibodies
NSP	Non Structural Protein

OD	Optical Density
ODN	OligoDeoxynucleotide
ORT	Oral Rehydration Therapy
PBS	Phosphate buffered saline
PCPP	Poly[di(CarboxylatoPhenoxy)]Phosphazene]
PCR	Polymerase Chain Reaction
PLG	Poly Lactide-Coglycolide
P-protein	protease-cleaved protein
PSA	Porcine Serum Albumin
RNA	Ribonucleic Acid
rpm	Round Per Minute
RRV	Rhesus Rotavirus
RTB	Ricinus communis Toxin B
RT-PCR	Reverse Transcriptase- Polymerase Chain Reaction
RV	Rotavirus
rVP6	Recombinant VP6
SDS-PAGE	Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis
Sf	Spodoptera frugiperda
TAE	Tris-Acetate EDTA Buffer
TEMED	Tetramethylethylenediamine
Th1 Cell	T helper 1 Cell
TrVP7	Truncated VP7
VLPs	Virus Like Proteins
VP	Viral Protein
WHO	World Health Organization

LIST OF TABLES

Table number	Title	Page
Table (1):	Evaluation of VP6-specific IgG antibodies in rabbits immunized with a denatured VP6 protein.	120
Table (2):	Evaluation of VP6-specific IgG antibodies in rabbits immunized with a native VP6 protein.	121
Table (3):	Rotavirus Wa, rotavirus isolate and DS1 infectious units reduction using VP6 specific neutralizing IgG antibodies.	124

LIST OF FIGURES

Figure number	Title	Page
Figure (a):	Diagram and electron micrograph of VP6 inner capsid and VP4/VP7 outer capsid.	9
Figure (b):	Schematic shows the locations of the various structural proteins within the rotavirus virion.	11
Figure (1):	1.5% agarose gel electrophoresis showing detection and isolation of the target rotavirus VP6 fragment.	101
Figure (2):	DNA sequence of the 155 bp fragment of rotavirus VP6.	103
Figure (3):	1.5% agarose gel electrophoresis showing confirmation of PCR amplification of the target rotavirus VP6 fragment with <i>EcoRV</i> and <i>XhoI</i> .	105
Figure (4):	1.5% agarose gel electrophoresis showing purification of PCR product of the target rotavirus VP6 fragment with <i>EcoRV</i> and <i>XhoI</i> .	107
Figure (5):	Appearance of Bacterial colonies on LB agar media.	109
Figure (6):	1.5% agarose gel electrophoresis showed detection of the recombinant pET30b-VP6 after double digestion.	111
Figure (7):	1.5% agarose gel electrophoresis for detection of the target rotavirus VP6 fragment post ligation process.	113
Figure (8):	DNA sequences of the 155 bp fragment of rotavirus VP6.	114
Figure (9):	12% SDS-PAGE analysis of the expressed and non purified recombinant Rotavirus VP6 proteins.	116
Figure (10):	12% SDS-PAGE analysis of expressed and purified recombinant Rotavirus VP6 proteins.	118

INTRODUCTION & AIM OF WORK