

Preparation and Polymerization of New Fluoromaleimide Derivatives

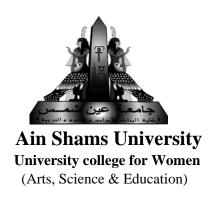
A Thesis Submitted in Partial Fulfillment for the Requirement of the Degree of Master of Science in Chemistry

by

Fatma Ahmed Mahmoud Gomaa

To

Department of Chemistry University college for Women (Arts, Science & Education) Ain Shams University


UNDER SUPERVISION OF:

Prof. Dr. Samia M. Mokhtar

Professor of Physical Chemistry University College for Women Ain Shams University, Egypt

Dr. Sakina M. Abd-ElAziz

Physical Chemistry Lecturer University College for Women Ain Shams University, Egypt

APPROVAL SHEET

Preparation and Polymerization of New Fluoromaleimide Derivatives

A Thesis Submitted in Partial Fulfillment for the Requirement of the Degree of Master of Science in Chemistry

by

Fatma Ahmed Mahmoud Gomaa

Board of Advisors Approved:

Head of Chemistry Department

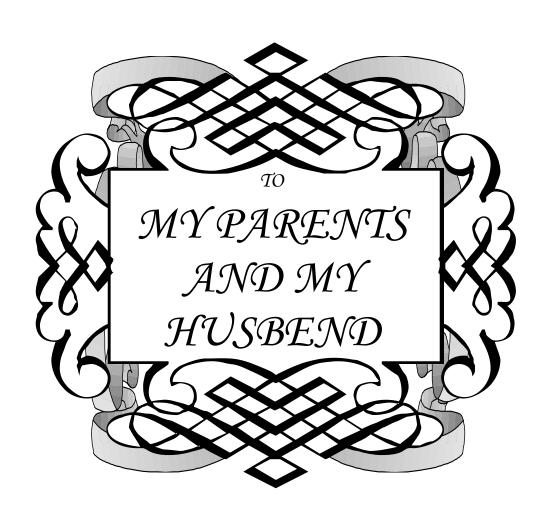
Prof. Samia M. Mokhtar

QUALIFICATION

Student Name : Fatma Ahmed Mahmoud Gomaa

Scientific Degree : B. Sc. (Chemistry)

Department : Chemistry


Faculty : University College for Women

(Arts, Science and Education)

University : Ain Shams

B.Sc. Graduation Date : May 2005

M. Sc. Graduation Date :

ABSTRACT

Preparation and Polymerization of new Fluoromaleimide Derivatives

Student name: Fatma Ahmed Mahmoud Gomaa
University College for Women
(Arts, Science and Education)
Ain Shams University

Novel 4-(4`-trifluoromethyl) phenoxy N-phenyl maleimide (FPMI) was synthesized and characterized by elemental analysis. The free radical- initiated polymerization of FPMI was carried out in 1,4 dioxane as a solvent using azobisisobutyronitrile as initiator. The monomer and polymer were investigated by ¹HNMR and FTIR. The effect of the monomer concentration, initiator concentration and temperature on the rate of polymerization (Rp) was studied. The molecular weight average (\overline{M} w and \overline{M} n) and polydispersity index of the polymer were determined by gel permeation chromatography and were equal to 73,5000, 16,7000 and 2.27 respectively. The properties of PFPMI and the copolymer including thermal behavior, thermal stability, photo-stability, solubility and intrinsic viscosity were studied. Moreover the monomer reactivity ratios for the copolymerization of FPMI (M₁) with MMA (M_2) , (VAc, M_2) were calculated by three different It has been found that the FPMI polymer and the copolymer of the prepared monomer with VAc and MMA have biological activity.

Keywords: Fluoro-maleimide polymers, FTIR, NMR, Free-radical polymerization, Copolymerization kinetics, Thermal analysis, Methyl methacrylate, vinyl acetate and Biological activity.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

44

List of Contents

List of Tables List of Figures List of Symbols and abbreviations Aim of the Work	vii viii xii xii
Chapter One	
INTRODUCTION & LITERATURE SURVEY	E
1.1 Introduction	1
1.2 Maleimides Monomer Synthesis	4
1.2.1 Homopolymerization of N-Substituted Maleimide	6
1.3 Copolymerization of N-Substituted Maleimides	13
1.3.1 Copolymerization Behavior	18
1.4 Thermal Stability	22
1.5 Fluoro polymers	30
1.6 Biological Activity	40
Chapter Two Materials and Experimental Techniques	
2.1 Materials	41
2.1.1 Monomers	41
2.1.2 Initiator	44

2.2 Experimental Techniques	44
2.2.1 Polymerization Procedure	44
2.2.2 Kinetics of Homopolymerization	45
2.3 Average Molecular Weight Determination	46
2.3.1 Viscosity Measurements	46
2.3.2 Gel Permeation Chromatography (GPC)	47
2.4 Thermal Analysis	47
2.4.1 Thermogravimetric Analysis (TGA)	47
2.4.2 Differential Scanning Calorimetry Analysis	47
2.5 Copolymerization	47
2.5.1 Copolymerization Process	47
2.5.2 Copolymer Analysis.	48
2.5.3 Calculation of the Reactivity Ratios of the monomers	48
2.6 Biological Activity	51
2.6.1 Antimicrobial activity	51
2.6.2 Antimicrobial Assay	51
Chapter Three	
Results and Discussion	
3.1 Monomer Synthesis	53
3.1.1 Homopolymerization	57
3.1.2 Kinetics of Polymerization of (FPMI)	61
3.1.2.1 Dependence of the Rate of Polymerization on Initiator Concentration	61
3.1.2.2 Dependence of the Rate of Polymerization on the Monomer Concentration	63

3.1.2.3 Effect of Temperature on the Polymerization
3.1.3 Molecular Weight Determination
3.1.3.1 Viscosity Measurements
3.1.3.2 Dependence of the Intrinsic Viscosity [η] on Monomer and Initiator Concentrations
3.1.3.3 Gel Permeation Chromatography (GPC)
3.1.4 Characterization
3.1.4.1 X-Ray Diffraction (XRD)
3.1.4.2 Solubility
3.1.4.3 Thermal Properties
3.2 Copolymerization
3.2.1 Copolymer Analysis
3.2.2 Effect Total monomer Concentration on the Rate of Copolymerization
3.3 Characterization of Copolymerization
3.3.1 Spectral Characterization of Copolymer
3.3.2 X-ray diffraction (XRD)
3.3.3 Thermal Behavior of Copolymers
3.4 Biological Activity of the FPMI Homopolymer and Some of its Copolymers
Summary
References
Arabic Summary

List of Tables

Table	Description	Page
3.1	Solubility of poly 4-(4'-Trifluoromethyl) Phenoxy N- Phenyl maleimide (PFPMI)	72
3.2	Copolymerization data for the FPMI (M_1) - VAc (M_2) system in 1,4 dioxane at 65 °C	79
3.3	Copolymerization data for the FPMI (M_1)- MMA (M_2) system in 1,4 dioxane at 65 °C	80
3.4	Analysis of copolymerization data for the FPMI (M_1) -VAc (M_2) system in 1,4 dioxane at 65 °C., by the F-R and K-T methods	80
3.5	Analysis of copolymerization data for the FPMI (M_1) - MMA (M_2) system in 1,4 dioxane at 65 °C, by the F-R and K-T methods	81
3.6	The reactivity ratios of FPMI with the two monomers (VAc and MMA) using free radical solution polymerization by AIBN at 65 °C	85
3.7	The inhibition zones reflecting the antifungal activity and antibacterial activity for each species	101
3.8	Antibacterial activity of poly FPMI and some of their copolymers with VAc and MMA	102
3.9	Antifungal activity data (inhibition zone, mm) of the investigated compounds in Table (3.8)	102

List of Figures

Figure	Description	Page
1.1	Synthetic strategies for the electron-poor maleimides bearing electron-donating chromophores.	7
1.2	Possible mechanisms for an acceptor-donor copolymerization	19
1.3	The possible routes for the formation of carbon dioxide form the pyrolysis of the maleimides derivatives.	28
1.4	Monomers used in the major commercial fuoropolymers	32
1.5	General features of a polymer modification scheme.	38
2.1	Preparation of 4-(4`-trifluoromethyl) phenoxy aniline.	42
2.2	Preparation of 4- (4'- trifluoromethyl) phenoxy N - phenyl maleimide (FPMI)	44
2.3	Poly 4-(4`-trifluoromethyl) phenoxy N-phenyl maleimide (PFPMI)	45
3.1	FTIR of 4-(4`-trifluoromethyl) phenoxy N-phenyl maleimide (FPMI) monomer	54
3.2	¹ H-NMR of 4-(4`-trifluoromethyl) phenoxy N-phenyl maleimide (FPMI) monomer	55
3.3	13 CNMR of 4-(4'-trifluoromethyl) phenoxy N-phenyl maleimide (FPMI) monomer	56
3.4	FTIR of Poly 4-(4`-trifluoromethyl) phenoxy N-phenyl maleimide (PFPMI)	58
3.5	¹ H-NMR of Poly 4-(4`-trifluoromethyl) phenoxyphenyl maleimide (PFPMI)	59

Figure	Description	Page
3.6	¹³ C-NMR of Poly 4-(4`-trifluoromethyl) phenoxyphenyl maleimide (PFPMI)	60
3.7	Effect of initiator concentration on the rate of polymerization of FPMI for different initiator at constant monomer concentration [FPMI] = 0.75 mol.L ⁻¹ in dioxane at 77 °C.	62
3.8	Log R_p versus log [AIBN] plots for FPMI homopolymerization at fixed [FPMI] = 0.75 mol.L ⁻¹ at 77 °C in dioxane	63
3.9	Effect of monomer concentration on the rate of polymerization of FPMI at constant [ABIN] = 1×10^{-2} mol.L ⁻¹ and temperature at 77 °C in 1,4 dioxane	64
3.10	Log (R_p) versus log [FPMI] plots for homopolymerization of FPMI at [ABIN] =1×10 ⁻² mol.L ⁻¹ and temperature at 77 °C in 1,4 dioxane.	65
3.11	The relation between the volume concentration dV of FPMI polymerization and time for different temperatures at [AIBN] =1×10 ⁻² mol.L ⁻¹ and [FPMI] = 0.75 mol.L ⁻¹ in 1,4 dioxane.	67
3.12	Log (Rp) versus $1/T$ plots for FPMI homopolymerization at [AIBN] = 1×10^{-2} mol.L ⁻¹ , [FPMI] = 0.75 mol.L ⁻¹ in $1,4$ dioxane	67
3.13	Effect of monomer concentration on the intrinsic viscosity $[\eta]$	69
3.14	Effect of initiator concentration on the intrinsic viscosity $[\eta]$	69
3.15	X-ray diffraction of monomer FPMI (a) and its polymer (b).	71
3.16	Thermogravimertic analysis of PFPMI under nitrogen	74

Figure	Description	Page
3.17	The differential thermal analysis of PFPMI	74
3.18	Differential scanning calorimetry analysis of FPMI	75
3.19	FTIR spectra of (a) PFPMI, (b) its heated poly FPMI at 400 °C and (c) the exposed sample to UV lamp for 10 days	76
3.20	Synthesis of FPMI-MMA copolymer	78
3.21	Synthesis of FPMI-VAc copolymer	79
3.22	Fineman and Ross plots for the copolymerization of FPMI with VAc and MMA in 1,4 dioxane at 65 °C.	82
3.23	Kelen-Tüdos plots for the copolymerization of FPMI with VAc and MMA in 1,4 dioxane at 65 °C	83
3.24	Copolymer compositions diagram of FPMI with VAc and MMA in 1,4 dioxane at 65 °C	84
3.25	Conversion-time curves for FPMI/VAc copolymer 1 mole in dioxane at 65 °C	87
3.26	Conversion-time curves for FPMI/VAc copolymer 2 mole in dioxane at 65 °C	87
3.27	Initial overall rate of copolymerization of the FPMI (M_1)–VAc (M_2) system vs. monomer feed molar ratio at 65 °C. [AIBN] = 1×10^{-2} mol.L ⁻¹ . Total monomer concentration = 1mol.L^{-1} , 2 mol.L ⁻¹ .	88
3.28	Conversion-time curves for FPMI/MMA copolymer 1 mole in dioxane at 65 °C	89
3.29	Conversion-time curves for FPMI/MMA copolymer 2 mole in dioxane at 65 °C	89