

Microbiological studies on biofilm forming bacteria and their role in enhancing corrosion of iron metals

By Mostafa Mostafa Ahmed Ahmed Abo Elsoud

(M.Sc. in Microbiology, 2009)

A thesis submitted for the degree of PhD in Microbiology (Microbial Biotechnology)

Supervised by

Prof. Mehreshan Taha El Mokadem

Prof. of Microbiology, Botany Dept., College for women Arts, Science and Education, Ain Shams University.

Ass. Prof. Eman Abbas Ghazy

Associated professor of Microbial biotechnology, Microbial Biotechnology Dept., National Research Center (NRC).

Ass. Prof. Magdy Ali Gadallah

Associated professor of Microbial Biotechnology, Microbial Biotechnology, Dept., National Research Center (NRC).

Women's college for Arts, Science and Education Ain Shams University

Abstract

Many modern investigations have centered on the microbially-influenced corrosion (MIC) of iron metals and alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and biofilm-forming bacteria. It has been estimated that 20-50% of internal corrosion is caused by MIC bacteria growing on the inner pipeline surface. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized.

Through the current study, fifteen bacterial isolates have been isolated, purified and characterized according to Bergey's Manual of Determinative Bacteriology, 9th edition and 16S rDNA. These isolates represent different groups responsible for microbiologically induced corrosion (MIC) of iron which are Iron Oxidizing Bacteria (IOB), Manganese Oxidizing Bacteria (MOB), Sulfur Oxidizing Bacteria (SOB) and Sulfate-Reducing Bacteria (SRB).

A comparative test has been taken place to select the most promising biofilm forming and sulfate reducing isolates. Accordingly, *Pseudomonas marginalis-SuOA* and *Desulfomonas pigra-SRS* were selected due to their maximum activities for the current study. The growth curves for both organisms have been represented.

The optimum conditions have been investigated and selected for studying biofilm formation and sulfide production by the selected bacterial isolates. Data showed that the optimum conditions for biofilm formation by *P. marginalis-SuOA* were; pH 6 and NaCl concentration (40,000 ppm) at 25°C for 21 days whereas the optimum conditions of sulfate reduction by *D. pigra-SRS* were pH 8 and NaCl concentration (zero ppm) at 35°C for 21 days.

The effect of single and mixed cultures *P. marginalis-SuOA* and *D. pigra-SRS* on the corrosion behavior of mild steel was investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Tafel polarization electrochemical measurements. The data showed that both isolates had the ability to form biofilm on the surface of mild steel under investigation and the biofilm formed in the mixed culture was more intensive than in single cultures. The Tafel polarization curve showed that mixed culture induced pitting corrosion compared with control and single cultures.

The quorum sensing signals, Acyl Homoserine Lactone (AHL) was detected during incubation time in axenix, binary and consortia of MIC bacterial cultures. The present results have demonstrated for the first time that quorum sensing signals (AHLs) are involved in coordination language of MIC during biofilm formation and corrosion process.

Twelve pure chemical substances were tested for their biocidal activity against *P. marginalis-SuOA* and *D. pigra-SRS*. The results showed that sodium chlorite, CTAB, Hydrogen peroxide and Crystal violet had the maximum activity against *P. marginalis-SuOA*, while CTAB, sodium chlorite, sodium molybdate and ammonium molybdate had the maximum activity against *D. pigra-SRS*, respectively.

The crude extracts of the agriculture wastes; onion and garlic leaves and date palm seeds showed that the methanolic extract of onion leaves, date palm seeds and water extract of garlic leaves exhibited the maximum biocidal activity against *P. marginalis-SuOA*, while all extracts did not show any biocidal activity against *D. pigra-SRS*.

Acknowledgement

Thank you Allah!

First and foremost I would like to express my utmost gratitude to **Prof.**Mehreshan Taha El Mokadem; professor of microbiology, Botany Dept.,

Women's College for Arts, Science and Education, Ain Shams University

and all supervision committee members: **Dr. Eman Ghazy**; associated

professor of Microbial biotechnology, Microbial Biotechnology Dept.,

National Research Center (NRC), **Dr. Magdy Gadallah**; associated

professor of Microbial biotechnology, Microbial Biotechnology, Dept.,

National Research Center (NRC), **Dr. Mohammed Nabil**; researcher of

microbial biotechnology, Microbial Biotechnology Dept., National Research

Center (NRC) for their teaching, guidance, and constructive criticism

throughout the years.

I am greatly indebted to **Prof. Mohammed Safwat**; professor of microbial genetics and **Prof. Kamal Khalil**; professor of molecular biology, Genetic Engineering and Biotechnology Research Division, National Research Center (NRC), **Dr. Talaat Elsebai**; Agricultural Research Division, National Research Center (NRC), **Dr. Nabil Abdel Ghany**; associated researcher of electrochemistry, Electrochemistry dept., National Research Center (NRC) and **Dr. Ahmed Khalaf**, Botany Dept., Women's College for Arts, Science and Education, Ain Shams University for their valuable assistance in the practical part, statistical analysis and their cooperation throughout this work.

I would like to acknowledge all members of Microbial Biotechnology Dept., National Research Center and Botany Dept., Women's College for Arts, Science and Education, Ain Shams University for their effective role in supporting this work.

This work was supported and funded by National Research Center (NRC) and Academy of Scientific Research and Biotechnology (ASRT).

Mostafa Abo Elsoud

Títle	Page
ABSTRACT	Ι
CONTENTS	IV
LIST OF TABLES	VIII
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	XIII
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
Economic importance of MIC	6
Mechanisms of biocorrosion	7
The major bacterial groups involved in MIC	9
Biofilm formation	13
Stages in biofilm formation and maturation	14
Monitoring of MIC	17
Identification of the causative bacteria	17
Electrochemical Methods	19
Chemical methods	21
Optical methods	21
Role of "quorum sensing" in the control of microbial activities	22
Types of QS signals	23
Inhibition of bacterial quorum sensing	28
Mechanisms of QS inhibition	30
Mitigation of MIC	32
Chemical antimicrobial agents	32
Eco-friendly antimicrobial agents	37
MATERIALS AND METHODS	39
I- Materials	39
Samples used for corrosion inducing bacteria	39
The working electrode (Steel)	39
Counter electrode	39
Reference electrode	40
Emery papers	40
Corrosion inducing bacteria	40
Bacterial biosensors	40
Chemical antimicrobial agents	40

Eco-friendly antimicrobial agents	41
Culture media	42
Reagents and indicators	46
Equipments used	49
- Methods	50
Physicochemical analysis of water samples	50
Chemical analysis of garden soil sample	50
Steel analysis and preparation	50
Bacterial isolation	50
Preservation of the bacterial isolates	52
Phenotypic characterization of bacterial isolates	52
Characterization of aerobic bacterial isolates	52
Morphological characterization	52
Biochemical and physiological characterization	53
Characterization of sulfate-reducing bacterial isolates	56
Morphological characterization	56
Biochemical and physiological characterization	57
Genotypic characterization of bacterial isolates	58
DNA extraction for 16S ribosomal RNA (rRNA) analysis	58
Primers and PCR amplification	58
DNA sequencing of the amplified 16s rRNA genes	59
The PCR product purification	59
Sequence alignment and phylogenetic analysis	60
Bacterial identification	60
Selection of suitable basal medium for the growth of aerobic	60
and anaerobic bacteria	00
Selection of the most promising aerobic biofilm-forming	61
bacterial isolate	01
Selection of the most promising anaerobic sulfate-reducing	62
bacterial (SRB) isolate	<i>(</i> 2
Growth curve for <i>P. marginalis-SuOA</i>	63
Growth curve for <i>D. pigra-SRS</i>	63
Factors affecting <i>P. marginalis-SuOA</i> growth	63
Factors affecting <i>D. pigra-SRS</i>	65
Biofilm formation assays	65
Scanning electron microscope (SEM) analysis	66
Fourier-transform infrared spectroscopy (FT-IR) analysis	66
Polarization (electrochemical) study	66
Quorum sensing assays	67

Quorum sensing signal (AHL) in axenic, co-culture and in a consortium of all bacterial isolates	67
Microbiologically Induced Corrosion (MIC) prevention and	
control	69
Antimicrobial activity against <i>P. marginalis-SuOA</i> using diffusion method	69
Antimicrobial activity against <i>D. pigra-SRS</i>	69
Statistical analysis	70
RESULTS	70
Physicochemical analysis of the collected samples.	71
a. Waters	71
b. Garden soil	72 72
Steel analysis	73
Isolation and purification of MIC bacteria	74
Phenotypic characterization of bacterial isolates	76
Genotypic characterization of bacterial isolates	87
Identification of bacterial isolates	92
Selection of a medium suitable for growth of biofilm-	94
forming and sulfate reducing bacteria	0.5
Screening for the most promising bacterial isolates	95
Screening for the most promising aerobic biofilm forming bacterial isolate	95
Screening for the most promising sulfate-reducing bacterial isolate	96
Growth curve profile for <i>P. marginalis-SuOA</i>	97
Growth curve profile for <i>Desulfomonas pigra-SRS</i>	99
Effect of the environmental conditions on <i>P. marginalis</i> -	
SuOA and D. pigra-SRS	100
рН	100
Temperature	102
NaCl concentrations	104
Incubation period	106
Shaking and static conditions	108
Yeast extract concentrations	109
Biofilm formation assays:	110
Effect of single and mixed cultures on the corrosion	110
behavior of the steel	110
FT-IR analysis	113
Electrochemical measurement	115
Screening of quorum sensing signal molecules	117
Combating P. marginalis-SuOA and D. pigra-SRS activities	121

Biocidal activity of the pure chemicals against <i>P. marginalis-SuOA</i>	121
Biocidal effect of the pure chemical agents against <i>D. pigra-SRS</i>	124
Biocidal effect of the agricultural waste extracts against <i>P. marginalis-SuOA</i>	127
Biocidal activity of the agricultural waste extracts against <i>D. pigra-SRS</i>	129
DISCUSSION	131
CONCLUSION	173
RECOMMENDATIONS	175
REFFERENCES	176
SUMMERY	224

List of Tables

Table number	Table title	Page
1	Purification of PCR product using DNA purification Kit	59
2	Bacterial biosensors and growth conditions	68
3	Physicochemical analysis of water samples	71-72
4	Physicochemical analysis of garden soil sample	73
5	Chemical analysis of steel	74
6	Bacterial isolation sources, media types, number of isolates and isolates code	75
7	Phenotypic characterization of the aerobic bacterial isolates according to Bergey's Manual of Determinative Bacteriology, 9 th edition.	78-80
8	Phenotypic characterization of sulfate reducing bacterial (SRB) isolate according to Bergey's Manual of Determinative Bacteriology, 9 th edition.	81
9	Partial sequences of 16S rDNA for the bacterial isolates.	88-91
10	Bacterial identification based on 16S rDNA sequencing alignment and Bergey's Manual of Determinative Bacteriology, 9 th edition	93
11	Visual observation for growth of bacterial isolates on nutrient broth and GYM after incubated at 30°C for 48 hours.	94
12	Biofilm formation by aerobic bacterial isolates at 30°C for 7 days using GYM medium.	95
13	Sulfide concentration (mg/l) of SRB isolates from different locations after 7 days at 30°C using Postgate medium B	96
14	Growth curve profile of <i>P. marginalis-SuOA</i> through 28 days at 30°C using GYM medium	98
15	Growth curve profile of <i>Desulfomonas pigra-SRS</i> through 28 days at 30°C using Postgate medium B.	99
16	Effect of pH values on <i>P marginalis-SuOA</i> and <i>D. pigra-SRS</i> after 7 days and at 30°C under static conditions	101

17	Effect of different incubation temperatures on <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> after 7 days under static conditions.	103
18	Effect of different NaCl concentrations on <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> after 7 days, at pH (7) and 30°C	105
19	Effect of different incubation periods on <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> at pH (7) and 30°C under static conditions.	107
20	Effect of shaking on <i>P. marginalis-SuOA</i> using GYM, at pH (7) and 30°C after incubation for 7 days.	108
21	Effect of different yeast extract concentrations on <i>Ps. marginalis-SuOA</i> using GYM, at pH (7) and 30°C after incubation for 7 days.	109
22	Electrochemical polarization parameters	116
23	Screening of quorum sensing signals in single and mixed cultures.	118
24	Screening for AHL in the presence of consortium of all bacterial isolates.	120
25	Biocidal effect of the different pure chemical agents against <i>P. marginalis-SuOA</i> on nutrient agar, after 24 hrs at 30°C.	122
26	Biocidal efficiency of the pure chemical agents on <i>D. pigra-SRS</i> using Postgate B for 7 days at 30°C, through sulfide determination.	125
27	Biocidal activity of the agricultural waste extracts against <i>P. marginalis-SuOA</i> .	127
28	Biocidal activity and efficiency of the agricultural waste extracts on <i>D. pigra-SRS</i> using Postgate B for 7 days at 30°C.	130

List of Figures

Figure number	Figure title	Page
1	Stages of biofilm formation	15
2	Autoinducer production and receiving by Gram-negative and Gram-positive bacteria	24
3	Chemical configurations of QS molecules	25
4	Some potential targets of QSI compounds	31
5	Diagrammatic figure for electrochemical cell	49
6	Conway plate used for SRB isolation	52
7	Pie diagrammatic chart for isolation media and number of isolates on each	75
8	Iron oxidizing bacteria isolates on iron oxidizing medium, after 24 hrs at 30°C.	82
9	Manganese oxidizing bacteria isolates on manganes-oxidizing medium, after 24 hrs at 30°C.	83
10	Sulfur oxidizing bacteria isolate on sulfur-oxidizing medium, after 24 hrs at 30°C.	84
11	Sulfate-reducing bacteria isolate coded (SRS) on Postgate medium B broth (a) and agar (b) after 7 days at 30°C.	84
12	Gram stain of Iron oxidizing bacteria isolates after growth on iron-oxidizing medium for 24 hrs at 30°C	85
13	Gram stain of manganese oxidizing bacteria isolates after growth on manganese-oxidizing medium for 24 hrs at 30°C.	86
14	Gram negative rods of (a): sulfur-oxidizing bacteria (SuOA) after growth on sulfur-oxidizing medium for 24 hrs at 30°C and (b): sulfate-reducing bacteria (SRS) after growth on Postgate medium B at 30°C for 7 days.	87
15	Agarose gel electrophoreses of PCR products (≈1500 bp) obtained from 16S rDNA amplification of bacterial isolates.	88
16	Biofilm formation by aerobic bacterial isolates at 30°C for 7 days using GYM medium.	96
17	Sulfide concentration (mg/l) of SRB isolates from different locations after 7 days at 30°C using Postgate medium B.	97
18	Growth curve profile of <i>P. marginalis-SuOA</i> through 28 days at 30°C using GYM medium.	98
19	Growth curve profile of <i>D. pigra-SRS</i> through 28 days at 30°C using Postgate medium B.	100

20	Effect of pH values on <i>P. marginalis-SuOA</i> using GYM medium at 30°C for 7 days under static conditions.	101
21	Effect of pH values on <i>D. pigra-SRS</i> using Postgate medium C at 30°C for 7 days under static conditions.	102
22	Effect of different incubation temperatures on <i>P. marginalis-SuOA</i> using GYM medium at pH 7 and 30°C for 7 days.	103
23	Effect of different incubation temperatures on <i>D. pigra-SRS</i> using Postgate medium C, at pH 7 and 30°C for 7 days.	104
24	Effect of different NaCl concentrations on <i>P. marginalis-</i> <i>SuOA</i> at pH 7 and 30°C for 7 days using GYM medium.	105
25	Effect of different NaCl concentrations on <i>D. pigra-SRS</i> using Postgate medium C, at pH 7 and 30°C for 7 days.	106
26	Effect of different incubation periods on <i>P. marginalis-SuOA</i> using GYM medium, at pH (7) and 30°C under static conditions.	107
27	Effect of different incubation periods on <i>D. pigra-SRS</i> using Postgate medium C, at pH (7) and 30°C under static conditions.	108
28	Effect of shaking on <i>P. marginalis-SuOA</i> using GYM, at pH (7) and 30°C after incubation for 7 days.	109
29	Effect of different yeast extract concentrations on <i>P. marginalis-SuOA</i> using GYM, at pH (7) and 30°C after incubation for 7 days.	110
30	Visual observation of the coupons; (a): immediately after grinding and degreasing (Blank), (b): exposed to sterile medium (Control), (c): exposed to <i>P. marginalis-SuOA</i> culture, (d): exposed to <i>D. pigra-SRS</i> culture and (e): exposed to mixed culture of <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> .	111
31	Scanning electron microscopy (SEM) indicating image of the steel surface [X 2000]; (a): immediately after grinding and degreasing (Blank): smooth and shiny appearance, and (b): exposed to sterile medium for 21 days at 30°C (Control): rough texture due to corrosion products on the whole surface.	111
32	SEM of the steel coupon surface exposed to <i>P. marginalis-SuOA</i> culture for 21 days at 30°C; (a): [X 2000] and (b): [X 4000]: bacterial cells embedded in biofilm layer.	112

33	SEM of the steel coupon surface exposed to D. pigra-SRS culture for 21 days at 30°C; (a) and (b): [X 2000] and (c): [X 4000]: black precipitate of corrosion product FeS.	112
34	SEM of the steel coupon surface exposed to mixed culture of <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> after 21 days at 30°C; (a) and (b): [X 2000].	113
35	FT-IR of the biofilm formed by <i>P. marginalis-SuOA</i> on the steel surface after 21 days at 30°C.	114
36	FT-IR of the biofilm formed by <i>D. pigra-SRS</i> on the steel surface after 21 days at 30°C.	114
37	FT-IR of the biofilm formed by <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> on the steel surface after 21 days at 30°C.	115
38	Tafel polarization curves of the steel; (Blank): at zero time, (Control): non inoculate at the end of incubation, in presence of single and mixed culture of <i>P. marginalis-SuOA</i> and <i>D. pigra-SRS</i> after 21 days at 30°C.	117
39	Screening for AHL production by <i>P. marginalis-SuOA</i> , <i>D. pigra-SRS</i> and mixture of them using <i>C. violaceum</i> (CV026) as biosensors.	119
40	Screening for AHL production in the presence of consortium of all bacterial isolates using and <i>C. violaceum (CV026)</i> as biosensors.	120
41	Biocidal effect of agricultural waste extracts against <i>P. marginalis-SuOA</i> activity on nutrient agar at 30°C for 24 hr, using inhibition zone method.	123
42	Biocidal activity of the pure chemicals against <i>P. marginalis-SuOA</i> on nutrient agar at 30°C for 24 hr, using inhibition zone method.	124
43	Biocidal efficiency (%) of the pure chemical agents on <i>D. pigra-SRS</i> . <i>D. pigra-SRS</i> using Postgate B for 7 days at 30°C.	126
44	Biocidal effect of agricultural wastes extract on <i>P. marginalis-SuOA</i> using nutrient agar and incubated for 24 h at 30°C.	128
45	Biocidal effect of the agricultural wastes crude extract against <i>P. marginalis-SuOA</i> using nutrient agar for 24 h at 30°C.	129
46	Biocidal activity of the agricultural waste extracts on <i>D. pigra-SRS</i> using Postgate B for 7 days at 30°C.	130

List of Abbreviations

AFM Atomic Force Microscopy

AHL Acylated Homoserine Lactones

AI Autoinducer

AMAPETCO Al-Amal Petroleum Company

APHA American Public Health Association

APS Adenosine-5 phosphosulfate

ASTM American Society for Testing

and Materials

ATP Adenosine Triphosphate

A. tumifaciens Agrobacterium tumifaciens

CLSM Confocal laser scanning microscopy

CTAB Cetyl Trimethyl Ammonium Bromide

C. violaceum Chromobacterium violaceum

DPD 4,5-dihydroxy-2,3-pentanedione

D. Pigra Desulfomonas pigra

E. coli Escherichia coli

EIS Electrochemical Impedance Spectroscopy

EN Electrochemical Noise

EPS Exopolysaccharide

Eshpetco Esh Elmalaha Petroleum Company

FT-IR Fourier transform infrared spectroscopy

GDP Gross Domestic Product

GUPCO Gulf of Suez Petroleum Company

GYM Glucose-Yeast Extract Medium

ICGEB International Center for Genetic Engineering

and Biotechnology.