MEASURING VITAMIN A AND VITAMIN E LEVELS IN NEONATES ADMITTED IN NEONATAL INTENSIVE CARE UNIT AS INDIRECT SCREEN FOR OXIDATIVE STRESS

Thesis

Submitted for partial Fulfillment of Master Degree in Pediaterics

By

Eman Reda Ali Asal

M.B.,B.CH., (2004) Cairo University

Under supervision of

Professor / Mohammed Sami Elsheimy

Professor of Pediaterics
Head of Pediatrics department
Head of Neonatal intensive care unit
Faculty of Medicine, Ain Shams University

Professor / Sahar Samir Abd ElMaksoud

Professor of Clinical Pathology Faculty of medicine, Ain Shams University

Doctor / Suzan Abd El-Razek

Lecturer of Pediaterics Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2013

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Mohammed Sami Elsheimy, Professor of Pediatrics for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Prof. Sahar Abd ElMaksoud, Professor of Clinical Pathology for her sincere efforts and fruitful encouragement.

I am deeply thankful to Dr. Suzan Abd El-Razek, Lecturer of Pediatrics for her great help, outstanding support, active participation and guidance.

Eman Reda

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	
• Free Radicals and Antioxidants	5
 Morbidities Related to Excessive Oxida 	tive Stress36
■ Vitamin E	74
■ Vitamin A	86
Patients and Methods	100
Results	110
Discussion	138
Summary and conclusion	146
Recommendations	149
References	150
Arabic sumamry	

List of Tables

Table No.	Title	Page No.
Table (1):	Reactive oxygen species	8
Table (2):	Description of personal data among states	•
Table (3):	Description of Indication of admissions and LOS as study cases	mong
Table (4): De	escription of Indications of admission ar	_
Table (5):	Description of NICU procedures, inclu (ventilation, phototherapy/exch transfusion, blood transfusion nutrition) among all cases	and
Table (6):	Description of ventilation among RD phototherapy/exchange transfusion ar jaundice cases, and blood transfusion among Heamorrhagic disease cases	mong usion
Table (7):	Description of Vitamin A and E so levels before admission and at dischanged among cases.	narge
Table (8):	Comparison between Vitamin A a serum levels before admission and discharge among cases	d at
Table (9):	Description of drop value in Vitamin A E serum levels at discharge among s cases.	study
Table (10):	Description of Vitamin A and E solevels among controls	

List of Tables (cont...)

Table No.	Title	Page No.
Table (11):	Comparison between cases and control regard Vitamin A and E serum levels	
Table (12):	Correlations between each of GA, CRP, TSB and vitamin A level by admission and at discharge	before
Table (13):	Correlations between each of GA, CRP, TSB and vitamin E level by admission and at discharge	before
Table (14):	Correlations between each of GA, CRP, TSB and the drop value in vitar and vitamin E level before admission at discharge.	min A n and
Table (15):	Relationship between indications admission and vitamin A and E s levels before admission and at dischar	serum
Table (16):	Relationship between indication admission and drop value in vitamin E	A and
Table (17):	Relationship between cases' maturand vitamin A and E serum levels be admission and at discharge	before
Table (18):	Relationship between cases' maturand drop value in vitamin A and E s levels	serum
Table (19):	Relationship between type of ventil and vitamin A and E serum levels ladmission and at discharge	before

List of Tables (cont...)

Table No.	Title Page	No.
Table (20):	Relationship between type of ventilation and drop value in vitamin A and E serum levels.	130
Table (21):	Relationship between management strategies done in jaundice and vitamin A and E serum levels before admission and at discharge	131
Table (22):	Relationship between management strategies done in jaundice and drop value in vitamin A and E serum levels	132
Table (23):	Relationship between blood transfusion and vitamin Aand E serum levels before admission and at discharge.	133
Table (24):	Relationship between blood transfusion and drop value in vitamin A and E serum levels	134
Table (25):	Relationship between parental nutrition and vitamin A and E serum levels before admission and at discharge	134
Table (26):	Relationship between parental nutrition and drop value in vitamin A and E	135
Table (27):	Relationship between number of indications for admission and vitamin A and E serum levels before admission and at discharge	136
Table (28):	_	137

List of Figures

Fig. No.	Title Page No.	
Fig. (1):	Summary of the production of reactive oxygen species (ROS)	14
Fig. (2):	Cell death pathways involved in hypoxicischemic brain injury	58
Fig. (3):	Absorption, transport, and metabolism of α - and g-tocopherol in the body.	75
Fig. (4):	Structure of naturally occurring tocotrienols	76
Fig. (5):	Structure of RRR-a-tochopherol and the seven stereo isomers	80
Fig. (6):	Antioxidant function of vitamin E located in the inner and outer leaflets of the membrane	
Fig. (7):	Vitamin A or retinol has a structure depicted above	86
Fig. (8):	Uptake and metabolism of vitamin A	88
Fig. (9):	Calibration curve for serum retinol1	04
Fig. (10):	Typical calibration curve obtained on a coleman Junior spectrophotometer1	06
Fig. (11):	Description of personal data among study cases	11
Fig. (12):	Description of number of indication(s) of admission among cases (single & combined).	
Fig. (13):	Description of number of indication(s) of admission among cases (single, double and combined)	13

List of Figures (cont...)

Fig. No.	Title Pa	ge No.
Fig. (14):	Description of Indications of admission among cases	
Fig. (15):	Description of parental nutrition among cases.	
Fig. (16):	Comparison between Vitamin A serum levels before admission and at discharge among cases)
Fig. (17):	Comparison between Vitamin E serum levels before admission and at discharge among cases	9
Fig. (18):	Correlations between CRP and vitamin Elevel before admission	
Fig. (19):	Correlations between TSB and vitamin Elevel before admission	
Fig. (20):	Correlations between LOS and the drop value in vitamin A.	
Fig. (21):	Correlations between LOS and the drop value in vitamin E	
Fig. (22):	Correlations between CRP and the drop value in vitamin E	
Fig. (23):	Relationship between number of indications for admission and drop value in vitamin A and E serum levels)

List of Abbreviations

Abb. Full term

7-NI 7-nitroindazole

AGEs Advanced glycation end products
AVED Ataxia with vitamin E deficiency

BAL Bronchoalveolar lavage
BPD Bronchopulmonary dysplasia

CAT Catalase

CEHC carboxyethyl hydroxychroman metabolites

cGMP cyclic guanosine monophosphate

CLD Chronic lung disease
CML Carboxyl methyl lysine

CoQ10 Coenzyme Q10

CRBP Cellular retinol binding protein
Cu, Zn-SOD Cupper, zinc-soperoxide dismutase

DHADocosahexaenoic acidDNADeoxyribonucleic acidEEGElectroencephalogramEPAEicosapentaenoic

EPR Electron paramagnetic resonance

ERG Electroretinogram

FIO₂ Inspiratory oxygen fraction GPx Glutathione peroxidase

GSH Glutathione

GSSG Oxidized glutathione
HClO hypochlorous acid
HDL High density lipoprotein

HI Hypoxiaischemia

HIE Hypoxic-ischemic encephalopathy

HNE 4-hydroxy- 2-nonenal HO-1 Heme oxygenase-1

ICAM-1Intracellular adhesion moleculeIDLIntermediate density lipoproteinINOSInducible nitric oxide synthase

IRE Iron responsive elements

IRE-BP Iron responsive elements biding protein

IU International unit

IUGR Intrauterine growth restriction

JNK/ AP1 C-jun NH2 terminal kinase/activator protein-1

LDL Low density lipoprotein LHP Lipid hydroperoxide LIP Labile iron pool

LPS Maternal lipopolysaccharide
MAPK Mitogen-Activated Protein Kinase

MDAMalondialdehydeMnManganeseMPOMyelperoxidase

mtPT Mitochondrial permeability transition

NAC N-Acetylcysteine

NAD(P)H Nicotine adenine di-nucleotide phosphate

NEC Necrotizing enterocolitis
NF-κB Necrosis factor-kappa beta

nNOS Neuronal NOS

NOSs Nitric oxide synthases
OxR Oxygen resuscitated
PCO₂ Carbon dioxide tension
PMN Polymorphnuclear
Pon3 Paraoxonase 3

PPAR-a Peroxisome proliferators activated receptor a **pPROM** Preterm premature rupture of membranes

PUFA Polyunsaturated fatty acid
PVL Periventricular leukomalacia

RA Retinoic acid

RAR Room air resuscitated
RAR Retinoid A receptor
RBP Retinol biding protein

RDS Respiratory distress syndrome rhSOD Recombinant human SOD RNS Reactive nitrogen species ROP Retinopathy of prematurity ROS Reactive oxygen species RXR Retinoid X receptor SOD Superoxide dismutase SpO_2 Arterial oxygen saturation TAC Total antioxidant capacity **TNF** Tumour necrosis factor ToH tocopherol-o-hydroxylase

TRX Thioredoxin

TTP Tocopherol transfer protein

UK United Kingdom
UVA Ultraviolet A

VCAM-1 Vascular cell adhesion molecule
VEGF Vascular endothelial growth factor

VLBWVery low birth weightVLDLLow density lipoprotein

V_T Tidal volume

XOR Xanthine oxidoreductase

Introduction

eonates are exposed to multiple stresses since birth, as birth trauma, hypoxic events, in addition to stresses which occur in neonatal intensive care unit as nosocomial infections, medications, and procedures (Saugstad, 2005). During this stresses, body releases free radicals; free radicals are defined as a chemical species with one or more unpaired electrons in their outer shell (Blackburn, 2005). Oxygen is used in all aerobic reactions, so free radicals production occurs mainly in all cells with aerobic energy production. In order to regain their stability, free radicals react quickly with other nearby molecules to obtain the electrons they need; this reaction causes damage to nearby molecules by changing their structure or function.

Free radicals play an important role in number of biological processes, as in defencse against viruses, bacteria, and cancer cells; they are also involved in vasodilatation, neurotransmission, and upregulation of certain genes. Their production may increase beyond body abilities to manage (Halliwell and Cuttardge, 2007).

Body has developed the means to take advantage of or counter free radicals activity. This defence is highly complex antioxidant systems, which combine with each other to protect the cells and organ systems of the body against damage caused by free radicals (Mates et al., 1999).

Antioxidant term refers to any molecule capable of stabilizing or deactivating free radicals before they attack the cells. They are classified into enzymatic antioxidants, such as, super oxide dismutase, catalase, glutathione peroxidase, and non enzymatic antioxidants including, vitamins E, C, and, A, billirubin, and ubiquinone.

In human fetus enzyme-based antioxidants start to develop and mature late in the third trimester and non enzematic antioxidant start to cross the placenta in late gestation (Buonocore et al., 2002).

Neonatal period is a vulnerable time for free radical damage and injury, this is especially true for preterms, because of maturational deficiencies (including their antioxidant defense system), medical interventions, nutritional issues, and increase susceptibility to infection and inflammation, as well as poor control of free radical-generating stimuli environment, in addition they have low levels of vitamin A, and, E in their blood (Rodriguez and Redman, 2005).

The common examples of non enzymatic most antioxidants are: vitamin E and vitamin A.

Vitamin E is a fat soluble vitamin and it acts as an antioxidant by protecting lipid bilayer from perioxidation. The majority of vitamin E is stored in the adipose tissue (Halliwell **&** Gutteridge, 2007).

Vitamin A is necessary for normal lung growth and for integrity of respiratory tract epithelial cells (Darlow and Garham, 2007).

Production of free radicals may increase beyond body abilities to manage creating an imbalance state.

Imbalance between antioxidants and free radicals has been blamed for many diseases that are manifest during neonatal period such as: bronchopulmonary dysplasia, necrotizing, enterocolitis, respiratory distress syndrome, hypoxic ischemic encephalopathy, retinopathy of prematurity, intraventricular hemorrhage, and periventricular leukomalacia (Halliwell & Gutteridge, 2007).

So, based on these facts and the exposure of the neonates to multiple stresses, providing antioxidants may prevent or decrease the severity of these diseases (Lisa Baba, 2008).

AIM OF THE WORK

stimation of vitamin A and E in neonates exposed to Loxidative stresses in order to clear their role as antioxidants, aiming at considering them as a routine supplementation to alleviate the complications of this problem in neonates.