THE ROLE OF DIFFUSION MAGNETIC RESONANCE IMAGING IN EVALUATION OF BRAIN TUMORS AND RECURRENCE

Essay

Submitted for Fulfillment of Master Degree in *Radiodiagnosis*

Ву

Sumia Abdalla Salih Abu El hassan M.B.B.S

Supervisors

Prof. Hassan Ali Hassan Elkiky

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Dr. Ramy Edward Asaad

Lecturer of Radiodiagnosis
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2010 ()

صدق الله العظيم

ABSTRACT

Diffusion weighted imaging adds useful information in diagnosis of brain

tumors; helps in grading of gliomas, and in differentiation of some brain

tumors. It can distinguish tumor recurrence from post radiotherapy effect

and benign from malignant cystic lesions. In addition, it can assess the

response of brain tumors to therapy.

Key words: Diffusion, Brain Tumors

ACKNOWLEDGEMENT

First and foremost, I always indebted to ALLAH, the most kind and merciful.

I would like to express my special thanks deep gratitude to Prof. Dr. Hassan Ali Hassan Elkiky, Professor of Diagnostic Radiology, Cairo University for his unfailing patience, tolerance and generosity. For this outstanding humbleness that parallels his invaluable knowledge. For delightful work atmosphere he creates and the kindest patronage.

I would like to express my wormiest appreciation and cardinal thanks to Dr. Ramy Edward Asaad, Lecturer of Diagnostic Radiology, Cairo University for her persistant effort, valuable guidance and meticulous revision of the work.

I also express my great appreciation to all my professors and colleagues for their cooperation and help.

I would also like to express my special thanks to my father, mother, and dear brother for their support and help.

CONTENTS

			Pages
Ackno	wledge	ement	i
Conte	nts		ii
List of	f Abbre	eviations	iv
List of	f figure	s	v
List of	f table .		vi
INTR	ODUC'	TION & AIM OF WORK	1
СНАН	PTER I	: Introduction to Brain tumor	
•	Inciden	ce	4
•	Brain tı	amor classification	5
•	Brain tı	amors MRI finding and pathological aspect	
	1.	Gliomas	12
	2.	Oligodendrogliomas	18
	3.	Ependymal cell tumors	18
	4.	Tumor of choroids plexus	19
	5.	Pineal Region tumor	21
	6.	Primitive neuro ectdermal tumor	22
	7.	Dysembryo plastic neuroepihelial tumors	24
	8.	Tumors of the sellar regoin	25
	9.	Heamatopoietic tumors	28
	10.	Tumors of the meninges	30
	11.	Tumors of the cranial nerves	32
	12.	Brain metastases	35
	13.	Suspicious brain lesions after radiotherapy	37
	14.	Cystic and tumor -like lesion	38
СНАЕ	TER I	I: Basic principle of Diffusion –Weighted imaging	44

CHAI	PTER III: MR Diffusion and Brain Tumor	
1.	Role of diffusion in differentiation and grading of gliomas	64
2.	Role of diffusion in cystic brain tumors	73
3.	Role of diffusion in differentiation of brain tumors from radiation Induced brain injury	78
4.	Role of diffusion in assessment response of treatment	82
5.	Diffusion criteria of some brain tumor s	84
CHAI Tumo	PTER IV: Role of other New MR Modalities in Brain	
1.	Diffusion tensor magnetic resonance imaging	96
2.	Functional magnetic resonance imaging	102
3.	Resonance spectroscopy	105
4.	Perfusion weighted imaging	108
5.	Dynamic susceptibility contrast enhanced perfusion imaging	110
SUMMARY		113
REFE	CRENCES	116
ARAI	BIC SUMMARY	1

List of Abbreviations

ADC : Apparent diffusion coefficient

AIDS : Acquired immunodeficiency syndrome

BOLD : Blood oxygenation level-dependent imaging.

CNS : Central nervous systemCPA : Cerebro pontine angleCSF : Cerebrospinal fluid

CT : Computerized tomography

CSF : cerebro spinal fluid

DNET : Dysembryoplastic neuroepithelial tumor

DTI : Diffusion tensor imaging

DWI : Diffusion weighted imaging

EP SE : Echoplanar spin echo EPI : Echoplanar imaging

FLAIR : Fluid-attenuated inversion recovery

GBM : Glioblastoma multiforme

GIT : Gastrointestinal tract

MRI : Magnetic resonance imaging

MRS : Magnetic resonance spectroscopy

N/C : Nuclear- to cytoplasmic

NADC : Normalized apparent diffusion coefficient

NADCt : Normalized apparent diffusion coefficient of the tumor

NF I : Neurofibromatosis type 1

PNET : Primitive neuroectodermal tumor rCBR : Relative cerebral blood volume

RF : Radiofrequency

SE : Spin echo

SI : Signal intensity

SEGA : Subependymal gaint cell astrocytoma

TR : Time of repetition
TS : Tuberous sclerosis

VEGF : Vascular endothelial growth factor

List of Figures

Figure No.	Title	Page No.
1.	Cerebral pilocytic astrocytoma	13
2.	Glioblastoma multiforme (GBM).	15
3.	Glioblastoma multiforme (GBM).	15
4.	Pleomorphic xanthoastrocytoma	16
5.	Subependymal gaint cell astrocytoma (SEGA)	17
6.	Choroid plexus carcinoma	20
7.	Gliomatosis cerebri	21
8.	Pineal germinoma	22
9.	Medulloblastoma	24
10.	Dysembryoplastic neuroepithelial tumor (DENT)	25
11.	Macroadenoma	27
12.	Microadenoma	27
13.	Craniopharyngioma	28
14.	Lymphoma	29
15.	Meningioma	31
16.	Schwannoma	33
17.	Bilateral Schwannoma.	35
18.	Epidermoid cyst axial	40
19.	Colloid cyst	41
20.	Lipoma axial T1-WI	42
21.	Chordoma	43
22.	a single water molecule during diffusion	44
23.	Diffusion weighted spin echo pulse sequence. Diffusion gradients.	45
24.	conventional SE imaging.	48
25.	Echo-planar imaging	49
26.	Comparison between single-shot and multishot echo-planar	51

Figure No.	Title	Page No.
27.	Visualization of the proton displacement due to diffusion Isotropic and anisotropic diffusion	52
28.	Anisotropic nature of diffusion in the brain	53
29.	Calculation of signal intensity on an isotropic DWI	54
30.	Removal of T2-weighted contrast in the isotropic transverse DWI	55
31.	Creation of an ADC map	37
32.	Diffusion of water molecules	61
33.	Glioblastoma multiforme(DWI and ADC map	66
34.	Pilocystic astrocytoma(DW&ADC)	68
35.	Astrocytoma (DW&ADC)	69
36.	Glioblastoma multiforms (DW&ADC)	69
37.	Oligodendroglioma (WHO II) (DW&ADC)	72
38.	Brain abscess (DW,ADC and rCBV ratio)	74
39.	Cerebral abscess axial (DWI and ADC map)	74
40.	Glioblastoma multiforme (DWI and ADC map)	75
41.	Brain metastases (DWI, ADC map and rCBV ratio)	76
42.	Grade IV glioma axial DWI, ADC map and rCBV ratio	76
43.	Brain radiation necrosis (DWI and ADC map)	80
44.	Brain tumor after receiving radiation (DWI and ADC map)	81
45.	Schematic diagram shows variation in tumor apparent diffusion coefficient (ADC) with treatment	83
46.	Recurrent malignant meningioma (DWI and ADC map)	84
47.	Benign meningioma(DWI and ADC map)	85
48.	CNS lymphoma (DWI and ADC map)	87
49.	Glioblastoma multiform axial post Contrast T1-WI, DWI and ADC map	87
50.	Multiple metastases (DWI and ADC map)	88
51.	Cerebral metastases (DWI and ADC map)	89
52.	Epidermoid (DW and ADC map)	91
53.	Arachnoid cyst (DWI and ADC map	92

Figure No.	Title	Page No.
54.	Desomoplastic medulloblastoma(DWI, ADC map and ADC value)	93
55.	Ependymoma (DWI and ADC map)	94
56.	Primitive neuroectodermal tumor (DWI and ADC map)	95
57.	diffusion tensor imaging DTI	98
58.	Two-dimensional display of the diffusion tensor	100
59.	Extraction of scalar values from diffusion tensor imaging	100
60.	Functional magnetic resonance imaging (FMRI)	104
61.	Grade IV glioblastoma fluid attenuated inversion recovery MRI, chemical shift imaging and spectrum	105
62.	Metastasis of a breast carcinoma (DWI, ADC and chemical shift	107
63.	Differentiating white matter infltration from compression in the perfusion WI	108
64.	Grade II oligodendroglioma and grade IV glioblastom fluid attenuated inversionand (CBV) maps	110

INTRODUCTION ANDAIM OF THE WORK

There are two types of brain tumors: primary brain tumors that originate in the brain and metastatic (secondary) brain tumors that originate from cancer cells that have migrated from other parts of the body. A primary brain tumor rarely spreads beyond the central nervous system, and death results from uncontrolled tumor growth within the limited space of the skull. Metastatic brain cancer indicates advanced disease and has a poor prognosis (*Stanley*, 2007).

Primary brain tumors can be cancerous or noncancerous. Both types take up space in the brain and may cause serious symptoms and complications. All cancerous brain tumors are life threatening (malignant) because they have an aggressive and invasive nature. A noncancerous primary brain tumor is life threatening when it compromises vital structures. Brain cancer is the leading cause of cancer-related death in patients younger than age 35 (*Stanley*, 2007).

Primary brain tumors account for 50% of intracranial tumors and secondary brain cancer accounts for the remaining cases. Approximately 17,000 people in the United States are diagnosed with primary cancer each year and nearly 13,000 die of the disease. The annual incidence of primary brain cancer in children is about 3 per 100,000. Secondary brain cancer occurs in 20–30% of patients with metastatic disease and incidence increases with age. In the United States, about 100,000 cases of secondary brain cancer are diagnosed each year (**Stanley, 2007**).

The diagnosis of brain tumors by magnetic resonance imaging (MRI) is usually based on basic unenhanced T1- and T2-weighted images and post contrast T1-weighted images. Conventional MRI techniques are not sufficient for the grading and specification of brain tumors. Furthermore, several non neoplastic lesions, such as arachnoid cysts, heterotopic gray matter, tubers of tuberous sclerosis, cavernous hemangiomas, aneurysms, granulomas, abscesses, radiation necrosis and acute demyelination with a mass effect can mimic brain tumors on MRI (*Stepha*, 2007)

In diffusion-weighted imaging (DWI), the image contrast is determined by the random translational (Brownian) motion of water molecules and DWI is most often used for the evaluation of stroke .The quantification of diffusion using DWI, i.e. diffusion imaging, has been attracting growing interest as an easy method to further characterize the nature of brain tumors (**Stephan**, **2007**).

So Diffusion imaging appears to have the potential to add important information to pre-surgical planning. While experience is limited, DWI appears to provide useful local information about the structures near the tumor, and this appears to be useful in planning. In future, DWI may provide an improved way to monitor intra-operative surgical procedures as well as their complication. Furthermore, the evaluation of the response of treatment to chemotherapy and to radiation therapy might also be possible. While diffusion imaging has some limitations, its active investigation and further study are clearly warranted (Inoue et al., 2005).

Diffusion-weighted (DW) MR imaging is a means to characterize and differentiate morphologic feature, including edema, necrosis, and tumor tissue, by measuring differences in apparent diffusion coefficient (ADC). It is hypothesized that DW imaging has the potential to differentiate recurrent or progressive tumor growth from treatment-induced damage to brain parenchyma in high-grade gliomas after radiation therapy (**Patric et al., 2006**).

ADC could provide addition useful information in the diagnosis of patient with brain tumor, such as tumor malignancy, peritumoral infiltration and the type of meningioma (**Kono et al., 2005**)

diffusion fiber tractography is the only method giving an indirect, in-vivo view of the nerve fiber trajectory. It can be associated with functional MRI to study the interconnections between nerve centers, used to analyze brain maturation and development (myelination), assist in the preoperative check-up for brain tumors (corticospinal bundle) or for medullary compression (*Escolar*, 2006).

Aim of the work

The aim of study is to evaluate the role of Diffusion Magentic resonance imaging in the assessment of brain tumors and recurrence.

CHAPTER I

Introduction to Brain Tumors

1. <u>Incidence</u>

About 10% of primary brain tumor occurs in children. Although it is occurs over all age the peak incidence at young than age 5, which declines until about age 20, then increase in older ages. In general, more males than female develop brain tumor. For example, the relation risk for males compared to female for glioblastoma multiforme(GBM) is approximately 1.6(i.e. the incidence rate are 16 times higher in males than female for this tumor type) (*Davis et al.*, 1999).

Mortality and incidence rate for primary brain tumors have been consistently higher in whites than in black. Meningiomas are the major exception with higher incidence rate in females than males and in blacks than whites .The 5 years survival rate for patients with malignant brain tumors is estimated to be 30%, compared to survival rate that estimated to be 72% for patient diagnosed with benign brain tumors. Five years survival rate for malignant brain tumor is inversely related to the age at diagnosis, with those in the oldest age groups having the worst survival rates 75 year- 3.6% where as those in the youngest age group have better survival< 45 years-57.3% (*Edwards*, 1994).

2. Brain tumor classification

In 1993 the WHO ratified a new comprehensive classification of neoplasm affecting the central nervous system. The classification of brain tumors is based on the premise that each type of tumor results from the abnormal growth of a specific cell type. To the extent that the behavior of a tumor correlates with basic cell type, tumor classification dictates the choice of therapy and predicts prognosis. The new WHO system is particularly useful in this regard with only a few notable exceptions (for example all or almost all gametocyte astrocytomas are actually anaplastic and hence labeled grade III or even IV rather than grade II as designated by the WHO system). The WHO classification also provides a parallel grading system for each type of tumor. In this grading system most named tumors are of a single defined grade (*Kleihues et al.*, 1993).

The new WHO classification provides the standard for communication between different centers in the United States and around the world (*Louis et al.*, 2007).