# Intraoperative Transesophageal Echocardiography during Surgery for Congenital Heart Defects in Pediatrics

Submitted for the fulfillment of Doctorate Degree in Pediatrics

Ву

#### Baher Matta Nashed Hanna, M. Sc.

Assistant Lecturer of Pediatrics
Cairo University

Under the supervision of

#### M. Fawzan Shaltout, MD

Professor of Pediatrics and Pediatric Cardiology Head of the Pediatric Cardiology Division Cairo University

#### Sonia A. El-Saiedi, MD

Professor of Pediatrics and Pediatric Cardiology Cairo University

## Wael M. Loffy, MD, MRCP

Professor of Pediatrics and Pediatric Cardiology Cairo University

#### Mohamed A. Seliem, MD, FACC

Professor of Pediatrics, Department of Pediatrics
University of Pennsylvania School of Medicine
Division of Pediatric Cardiology, The Children's Hospital of Philadelphia, USA

Cairo University 2009

#### **Abstract**

OBJECTIVES: The importance of intraoperative transesophageal echocardiography in congenital heart surgery, its diagnostic accuracy and its predictive value on long-term follow-up. STUDY DESIGN: This is a retrospective study done on 1156 patients in which the preoperative and postoperative transthoracic echo reports were analyzed together with the intraoperative transesophageal echo reports performed for patients undergoing ventricular and atrial septal defect closure, mitral valve repairs and right ventricular outflow tract repairs. RESULTS: Intraoperative transesophageal echocardiography detected the highest incidence of residual pathology in mitral valve repairs and the least in atrial septal defect repairs. It was also helpful in defining patients in need for surgical revision intraoperatively. Intraoperative transesophageal echocardiography was most accurate in diagnosing residual mitral regurgitation and least accurate in atrial sepal defects. On follow up, residual septal defects had a tendency to close spontaneousely, residual right ventricular outflow tract gradients tended to decline, while the residual mitral valve regurgitations were liable to progress. CONCLUSION: Intraoperative transesophageal echocardiography has an influential role in congenital heart surgery; it may miss a significant percentage of residual defects but is able to predict the fate of residual lesions detected intraoperatively.

KEY WORDS: intraoperative transesophageal echocardiography, residual lesion, residual lesions, septal defects, mitral valve, right ventricular outflow tract.

## **Contents**

| Abstract                                                                                                  | i        |
|-----------------------------------------------------------------------------------------------------------|----------|
| Contents                                                                                                  | iii      |
| Acknowledgements                                                                                          | V        |
| List of tables                                                                                            | vi       |
| List of figures                                                                                           | vii      |
| List of abbreviations                                                                                     | X        |
| 1. Introduction and Aim of Work  1.1. Introduction  1.2. Aim of Work                                      | 3        |
| Review of Literature                                                                                      | 9        |
| 2.3. Utility of intraoperative transesophageal echocardiography                                           | 13<br>13 |
| 2.3.2. Assessment of residual pathology                                                                   | 21       |
| 2.4. Influences of intraoperative transesophageal echocardiography of an esthetic and surgical management | on       |
| echocardiography2.6. Indications for transesophageal echocardiography in the patient                      | with     |
| congenital heart disease                                                                                  | 27       |
| 2.7. Safety issues                                                                                        | 30       |
| 2.7.2. Probe safety                                                                                       |          |

| 2.7.4. Contraindications to transesophageal echocardiography in the                    |      |
|----------------------------------------------------------------------------------------|------|
| patient with congenital heart disease                                                  | .32  |
| 2.8. Knoweledge base, skills and training necessary to perform a                       |      |
| transesophageal echocardiographic examination in the patient with                      | 0.4  |
| congenital heart disease                                                               |      |
| 2.8.1. Cognitive skills, technical skills, and training guidelines                     | . 34 |
| 2.8.2. Recommendations for physicians not formally trained in                          |      |
| transesophageal echocardiography performance in patients with congenital heart disease | 26   |
| 2.8.3. Maintenance of skills                                                           |      |
| 2.9. Performance of transesophageal echocardiography in a pediatric                    | . 30 |
| patient                                                                                | 30   |
| 2.9.1. Instrumentation                                                                 |      |
| 2.9.2. Anatomical and spatial relationships                                            |      |
| 2.9.3. Order of examination                                                            |      |
| 3. Material and Methods                                                                | 67   |
| 3.1. Patients                                                                          |      |
| 3.2. Echocardiographic examinations                                                    |      |
| 3.3. Statistical analysis                                                              |      |
| 4. Results                                                                             | 71   |
| 4.1. Overview                                                                          | .73  |
| 4.2. Septal Defects                                                                    | .73  |
| 4.2.1. Ventricular septal defects                                                      | . 73 |
| 4.2.2. Atrial septal defects                                                           | . 79 |
| 4.3. Mitral valve repairs                                                              | .87  |
| 4.4. Right ventricular outflow tract repairs                                           | .97  |
| 5. Discussion1                                                                         | 07   |
| 6. Conclusion and Recommendations1                                                     | 17   |
| Summary1                                                                               | 21   |
| References1                                                                            | 25   |
| Arabic summary1                                                                        | 43   |

#### **Acknowledgements**



ords fall short of containing my genuine appreciation; but a lifetime of gratitude will prove it.

My supervisors and professors Dr. Fawzan Shaltout, Dr. Sonia El-Saiedi, and Dr. Wael Lotfy: thank you for offering me much of your time, effort and experience.

Dr. Seliem: your generous hospitality will always be remembered.

Professors Dr. Ramzi El-Baroudy and Dr. Emad Salem: unceasingly I continue to learn from you through your model.

My friends and fellow doctors: Andrew Irwin, Bassem Matta, Maged Fakhry and Osama Abdel-Aziz: This work would not have come to light without you.

My family: without you, I would not be where I am today, and most certainly would not have accomplished what I have.

"As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them"

John F. Kennedy

And I, hereby, second that saying



## List of tables

| Table 2.1: Pre-bypass echocardiographic data by type of congenital heart        |      |
|---------------------------------------------------------------------------------|------|
| defect                                                                          | 13   |
| Table 2.2: Post-bypass echocardiographic data by type of congenital heart       |      |
| defect repair or surgical procedure                                             | 23   |
| Table 2.3: Contraindications for transesophageal echocardiography               | 33   |
| Table 2.4: Guidelines for training and maintenance of competence                | 36   |
| Table 4.1: Types of ventricular septal defects.                                 |      |
| Table 4.2: Intraoperative TEE findings in VSD                                   | 75   |
| Table 4.3: Predischarge TTE versus intraoperative TEE in VSD                    | 77   |
| Table 4.4: Follow up TTE versus intraoperative TEE in VSD                       | 78   |
| Table 4.5: Types of Atrial Septal Defects.                                      | 79   |
| Table 4.6: Intraoperative TEE findings in ASD                                   | 81   |
| Table 4.7: Predischarge TTE versus intraoperative TEE in ASD                    | 82   |
| Table 4.8. Follow up TTE versus intraoperative TEE in ASD                       | 83   |
| Table 4.9: The incidence of residual septal defects according to intraoperative | е    |
| TEE                                                                             | 85   |
| Table 4.10: Predischarge TTE findings in septal defects                         | 86   |
| Table 4.11: Follow up TTE findings in septal defects                            | 86   |
| Table 4.12: Types of mitral valve repairs                                       | 87   |
| Table 4.13: Intraoperative TEE findings in mitral valve repairs                 | 89   |
| Table 4.14: Predischarge TTE versus intraoperative TEE in mitral valve repair   | irs  |
|                                                                                 | 92   |
| Table 4.15: Follow up TTE findings in mitral valve repairs and the correlation  | to   |
| intraoperative TEE findings                                                     | 94   |
| Table 4.16: Types of right ventricular outflow tract repairs                    | 97   |
| Table 4.17: Intraoperative TEE findings in RVOT repairs                         |      |
| Table 4.18: Predischarge TTE findings vs. intraoperative TEE in RVOT repair     | rs   |
|                                                                                 |      |
| Table 4.19: Follow up TTE versus intraoperative TEE in RVOT repairs             | .104 |

# List of figures

| Figure 2.1: Types of transesophageal echocardiographic probes                   | 12    |
|---------------------------------------------------------------------------------|-------|
| Figure 2.2: (a-f) Echocardiographic images of septal defects                    | 17    |
| Figure 2.3: (a-e) Echocardiographic images of complex lesions                   | 20    |
| Figure 2.4: Continuous wave Doppler interrogation of left ventricular outflow i | tract |
| in patient with subaortic obstruction                                           | 21    |
| Figure 2.5: Instrumentation of transesophageal echocardiography                 | 40    |
| Figure 2.6: Transesophageal echocardiography probe and multiplanar              |       |
| transducer:position basics                                                      | 40    |
| Figure 2.7: TEE probe: anatomical relationships                                 | 41    |
| Figure 2.8: Anatomic reference scheme and nomenclature                          | 41    |
| Figure 2.9: Anatomical relationships of transesophageal echocardiography        | 42    |
| Figure 2.10: Spatial relationships of transesophageal echocardiography          | 42    |
| Figure 2.11: Anatomic reference scheme and nomenclature                         | 43    |
| Figure 2.12: Midesophageal four-chamber (A)                                     | 46    |
| Figure 2.13: Midesophageal four-chamber (A)                                     | 46    |
| Figure 2.14: Midesophageal four-chamber (A)                                     | 47    |
| Figure 2.15: Midesophageal mitral commissural (G)                               | 47    |
| Figure 2.16: Midesophageal mitral commissural (G)                               | 48    |
| Figure 2.17: Midesophageal two-chamber (B)                                      | 48    |
| Figure 2.18: Midesophageal two-chamber (B)                                      | 49    |
| Figure 2.19: Midesophageal long axis (C)                                        | 49    |
| Figure 2.20: Midesophageal long axis (C)                                        | 50    |
| Figure 2.21: Midesophageal right ventricular inflow-outflow (M)                 | 50    |
| Figure 2.22: Midesophageal right ventricular inflow-outflow (M)                 | 51    |
| Figure 2.23: Midesophageal bicaval (L)                                          | 51    |
| Figure 2.24: Midesophageal bicaval (L)                                          | 52    |
| Figure 2.25: Midesophageal ascending aortic long axis view (P)                  | 52    |
| Figure 2.26: Midesophageal ascending aortic long axis view (P)                  | 53    |
| Figure 2.27: Midesophageal aortic valve long axis (I)                           | 53    |
| Figure 2.28: Midesophageal aortic valve long axis (I)                           | 54    |
| Figure 2.29: Midesophageal ascending aortic short axis view (O)                 | 54    |
| Figure 2.30: Midesophageal ascending aortic short axis view (O)                 | 55    |
| Figure 2.31: Midesophageal aortic valve short axis (H)                          | 55    |
| Figure 2.32: Midesophageal aortic valve short axis (H)                          | 56    |
| Figure 2.33: Upper esophageal aortic arch long axis (S)                         | 56    |
| Figure 2.34: Upper esophageal aortic arch long axis (S)                         | 57    |
| Figure 2.35: Upper esophageal aortic arch short axis (T)                        | 57    |
| Figure 2.36: Descending aortic long axis (R)                                    |       |
|                                                                                 |       |

| Figure 2.37: Descending aortic long axis (R)                                      | . 58  |
|-----------------------------------------------------------------------------------|-------|
| Figure 2.38: Descending aortic short axis (Q).                                    |       |
| Figure 2.39: Descending aortic short axis (Q).                                    | . 59  |
| Figure 2.40: Transgastric midshort axis (D)                                       | . 60  |
| Figure 2.41: Transgastric midshort axis (D)                                       | . 60  |
| Figure 2.42: Transgastric basal short axis (F).                                   | . 61  |
| Figure 2.43: Transgastric basal short axis (F).                                   | . 61  |
| Figure 2.44: Transgastric two-chamber (E).                                        | . 62  |
| Figure 2.45: Transgastric two-chamber (E).                                        | . 62  |
| Figure 2.46: Transgastric long axis (J).                                          | . 63  |
| Figure 2.47: Transgastric long axis (J).                                          | . 63  |
| Figure 2.48: Transgastric right ventricular inflow (N)                            | . 64  |
| Figure 2.49: Transgastric right ventricular inflow (N)                            | . 64  |
| Figure 2.50: Deep transgastric long axis (K).                                     | . 65  |
| Figure 2.51: Deep transgastric long axis (K).                                     | . 65  |
| Figure 4.1: Types of ventricular septal defects                                   | . 74  |
| Figure 4.2 (a): Intraoperative TEE findings in VSD                                | . 76  |
| Figure 4.2 (b): Intraoperative TEE findings in VSD                                | . 76  |
| Figure 4.3: Predischarge TTE versus intraoperative TEE in VSD                     | . 77  |
| Figure 4.4: Follow up TTE versus intraoperative TEE in VSD                        |       |
| Figure 4.5: Types of atrial septal defects                                        | . 79  |
| Figure 4.6: Intraoperative TEE findings in ASD                                    |       |
| Figure 4.7: Predischarge TTE versus intraoperative TEE in ASD                     | . 82  |
| Figure 4.8: Follow up TTE versus intraoperative TEE in ASD                        | . 83  |
| Flow diagram 1: Illustrating the intraoperative TEE findings in septal defect     |       |
| repairs and relation to the postoperative predischarge TTE                        |       |
| Error! Bookmark not defin                                                         | ed.   |
| Figure 4.9 (a): The incidence of residual septal defects according to             |       |
| intraoperative TEE                                                                | . 85  |
| Figure 4.9 (b): Comparison between VSD vs. ASD: residual defects and case.        | s     |
| requiring rebypass                                                                | . 85  |
| Figure 4.10: Predischarge TTE findings in septal defects                          | . 86  |
| Figure 4.11: Follow up TTE findings in septal defects                             | . 86  |
| Figure 4.12: Types of mitral valve repairs                                        | . 88  |
| Figure 4.13 (a): Intraoperative TEE findings in mitral valve repairs              | . 90  |
| Figure 4.13 (b): Intraoperative TEE findings in mitral valve repairs              | . 90  |
| Figure 4.13 (c): Intraoperative TEE findings in mitral valve repairs: residual mi | itral |
| regurgitation (MR) and cases requiring rebypass, comparison                       |       |
| between different degrees of severity                                             | . 91  |
| Figure 4.14 (a): Predischarge TTE findings in mitral valve repair                 |       |
| Figure 4.14 (b): Predischarge TTE vs. intraoperative TEE in mitral valve repair   |       |
|                                                                                   |       |
| Figure 4.15 (a): Follow up TTE findings in mitral valve repairs                   | . 94  |
| Figure 4.15 (b): Follow up TTE vs. intraoperative TEE in mitral valve repairs     | . 95  |

| Flow diagram 2: Illustrating the intraoperative TEE findings in mitral valve repairs |
|--------------------------------------------------------------------------------------|
| and relation to the postoperative predischarge TTE Error!                            |
| Bookmark not defined.                                                                |
| Figure 4.16: Types of right ventricular outflow tract repairs97                      |
| Figure 4.17(a): Intraoperative TEE findings in RVOT repairs99                        |
| Figure 4.17(b): Intraoperative TEE findings in RVOT repairs100                       |
| Figure 4.17(c): Intraoperative TEE findings in RVOT repairs: comparison              |
| between different degrees of severity100                                             |
| Figure 4.18 (a): Predischarge TTE findings in RVOT repairs103                        |
| Figure 4.18 (b): Predischarge TTE vs. intraoperative TEE in RVOT repairs103          |
| Figure 4.19 (a): Follow up findings in RVOT repairs105                               |
| Figure 4.19 (b): Follow up TTE versus intraoperative TEE in RVOT repairs105          |
| Flow diagram 3: Illustrating the intraoperative TEE findings in right ventricular    |
| outflow tract repairs and relation to the postoperative                              |
| predischarge TTEError! Bookmark not defined.                                         |
|                                                                                      |

## List of abbreviations

| AMVL  | Anterior mitral valve leaflet               |
|-------|---------------------------------------------|
| AO    | Aorta                                       |
| APV   | Absent pulmonary valve                      |
| ASD   | Atrial septal defects                       |
| AVC   | Atrio-ventricular canal                     |
| CHD   | Congenital heart disease                    |
| FN    | False negative                              |
| FP    | False positive                              |
| IVC   | Inferior vena cava                          |
| LA    | Left atrium                                 |
| lcc   | Left coronary cusp                          |
| LPA   | Left pulmonary artery                       |
| LV    | Left ventricle                              |
| LVOT  | Left ventricular outflow tract              |
| ME    | Mid esophageal                              |
| ncc   | Non-coronary cusp                           |
| NPV   | Negative predictive value                   |
| PA    | Pulmonary artery                            |
| PMVL  | Posterior mitral valve leaflet              |
| PPV   | Positive predictive value                   |
| RA    | Right atrium                                |
| rcc   | Right coronary cusp                         |
| RPA   | Right pulmonary artery                      |
| RV    | Right ventricle                             |
| RVOT  | Right ventricular outflow tract             |
| RVOTO | Right ventricular outflow tract obstruction |
| SVC   | Superior vena cava                          |
| TEE   | Transesophageal echocardiography            |
| TN    | True negative                               |
| TOF   | Tetralogy of Fallot                         |
| TP    | True positive                               |
| TTE   | Transthoracic echocardiography              |
| TV    | Tricuspid valve                             |
| UE    | Upper esophageal                            |
| VSD   | Ventricular septal defects                  |
|       |                                             |

1

# **Introduction and Aim of Work**

#### 1.1. Introduction



he transesophageal approach is recognized as an effective window for imaging intracardiac and vascular structures due to the proximity of the esophagus to the heart and major blood vessels. Initial consideration of

using the esophagus as a site of echocardiographic imaging was made in the mid- 1970s by Frazin et al. who described the use of an esophageal M-mode ultrasonic crystal (Frazin et al., 1976). The early 1980s marked the introduction of a gastroscope with a two-dimensional transducer. Since the introduction of transesophageal echocardiography (TEE) to the intraoperative setting in the late 1980s (Schluter et al., 1982), multiple publications have documented the utility of this imaging modality in adult cardiac patients in the evaluation of valvular repair (Goldman et al., 1987; Taams et al., 1989; Foster et al., 1998) and prosthetic valve function (Nellessen et al., 1988; van den Brink et al., 1989), and for monitoring of myocardial ischemia (Leung et al., 1989; Smith et al., 1985) and left ventricular preload (Abel et al., 1987; De Bruijn 1987; Harpole et al., 1989).

As surgical advances in the care of patients with heart disease rapidly evolve, the contributions of TEE continue to be demonstrated (Applebaum et al., 1998; Shanewise et al., 2002; Pu et al., 2003). Immediate detection of suboptimal surgical interventions by TEE has been shown to improve surgical outcomes, thereby avoiding subsequent reoperations and reducing morbidity, mortality, and cost (Benson and Cahalan, 1995). Until the early 1990s, intraoperative evaluation of infants and children undergoing surgery for congenital heart was not feasible via the transesophageal approach due to the fact that probe sizes were not suitable for examination in young children. The subsequent development of miniaturized technology initially generated a number of studies which demonstrated that TEE can be performed safely in the pediatric age group and provides substantial benefit as well (Ritter, 1990; Ritter and Thys, 1989; Stumper et al., 1990; Ritter et al., 1989; Lam et al., 1991). This experience has been substantiated over the last decade.' (Miller-Hance and Russell. 2005)