Gene Therapy in Otorhinolaryngology

Essay

Submitted for fulfilment of M.Sc.degree in otorhinolaryngology

By

Adel Said Abd El-Ghany El-Antably
M.B.B.Ch.

Supervised by:

Prof. Dr. Mohamed Nabil Lasheen

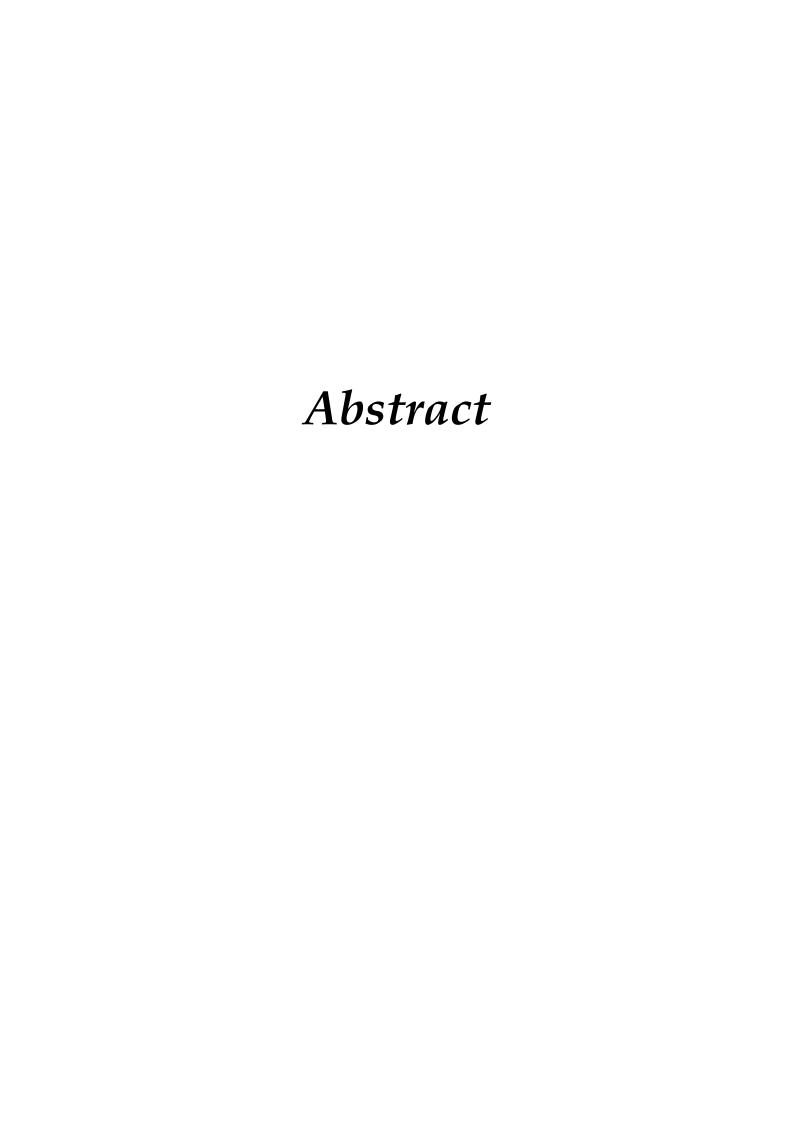
Professor of Otorhinolaryngology
Faculty of Medicine
Cairo University

Prof. Dr. Mosaad Abdel-Hziz

Professor of Otorhinolaryngology
Faculty of Medicine
Cairo University

Dr. Badawy Chafik Khalifa

Faculty of Medicine


Cairo University

Faculty of Medicine Cairo University 2010

بسم الله الرحمن الرحيم وجعل لكم السمع والأبصار والأفئدة صدق الله العظيم

آية ٢٣ سورة الملك

Abstract

The dramatic increases in the knowledge of the molecular and genetic basis of various diseases combined with advances in technology have resulted in novel molecular therapies for these diseases. Gene therapy, in utero or adults, which involves the transfer of genetic material to target cells via viral or non-viral vectors to produce a therapeutic effect, is a promising approach for treatment of a variety of diseases as hearing loss, paranasal sinus disease, recurrent respiratory papillomatosis, head and neck cancer, maxillofacial injuries and cleft palate.

<u>Keywords:</u> gene therapy, in utero gene therapy, vectors, hearing loss, paranasal sinus disease, recurrent respiratory papillomatosis, head and neck cancer, maxillofacial injuries, cleft palate.

List of contents

Page
AcknowledgmentsI
List of abbreviationsII
List of figuresVI
List of tablesVII
Introduction1
Aim of work4
Chapter 1: Fundamentals of molecular biology5
Chapter 2: Approaches to gene therapy14
Chapter 3: Vectors for gene delivery16
Chapter 4: Methods of gene delivery25
Chapter 5: Applications of gene therapy in otorhinolaryngology
A: Gene therapy in the inner ear29
B: Gene therapy in the middle ear43
C: Gene therapy in the paranasal sinuses47
D: Gene therapy in recurrent respiratory papillomatosis54
E: Gene therapy in head and neck cancer58
F: Gene therapy in restoration of maxillofacial architecture81
Chapter 6: <i>In utero</i> gene therapy for genetic diseases and its applications in otorhinolaryngology
Summary
References111
Arabic summary

Acknowledgments

Acknowledgments

I would like to express my deepest gratitude and appreciation to Prof. Dr. Mohamed Nabil Lasheen for his guidance and support throughout this work and his continuous education during my residency.

I am thankful and grateful to Prof. Dr. Mosaad Abdel-Aziz for his great assistance and outstanding support in accomplishing this work.

My deep regards to the indispensable effort and encouragement of Dr. Badawy Chafik Khalifa during the entire work.

I am greatly indebted to my father, whom without his heartfelt help and guidance, neither this work would come to light nor I was here.

I am appreciating the patience of my family members till the end of this work and their continuous encouragement to push me forwards.

Adel Said El-Antably...

List of abbreviations

5-FC 5-fluorocytosine.

A Adenine.

AAV Adeno-associated virus.

Ad Adenovirus.

APC Antigen presenting cells.

Ath1 or Atoh1 Atonal homologue 1.

β-gal β -galactosidase.

Bak Bcl-2 homologous antagonist/killer.

Bax Bcl-2—associated X protein.

BDNF Brain-derived neurotrophic factor.

bFGF Basic FGF.

BMP Bone morphogenetic protein.

C Cytosine.

CAG Cytomegalovirus IE enhancer and chicken β-actin

promoter.

CAMP Cyclic adenosine monophosphate.CAR Coxsackie and adenovirus receptor.Caspase Cytosolic aspartate-specific protease.

CD Cytosine deaminase.cDNA Complementary DNA.

CF Cystic fibrosis.

CFTR Cystic fibrosis transmembrane conductance

regulator.

CMV Cytomegalovirus.

COM Chronic otitis media.

Ctbp2 Carboxy-terminal binding protein 2.

CTL Cytotoxic T lymphocytes.

DFNA2 Nonsyndromic sensorineural deafness type 2.

DNA Deoxyribonucleic acid.DSB Double-strand breaks.dsDNA Double-stranded DNA.

DTH Delayed type hypersensitivity.

Embryonic day.
EBV Epstein-Barr virus.

EF1A Elongation factor $1-\alpha$ gene.

EGF Epidermal growth factor.

EIAV Equine infectious anaemic virus.

FasL Fas ligand.

FGF Fibroblast growth factor.FITC Fluorescein isothiocyanate.FIV Feline immunodeficiency virus.

G Guanine.

GAM Gene-activated matrix.

GCV Gancyclovir.

GDEPT Gene-directed enzyme prodrug therapy.GDNF Glial cell-line-derived neurotrophic factor.

GFP Green fluorescent protein.

GM-CSF Granulocyte-macrophage colony stimulating factor.

GTP Guanosine triphosphate.Hath1 Human atonal homologue 1.HIV Human immunodeficiency virus.

HL Hearing loss.

HmR Hammerhead ribozyme.HNC Head and neck cancer.

hnRNA Heterogeneous nuclear RNA.

HNSCC Head and neck squamous cell cancer.

HpR Hairpin ribozyme.

HPV Human papilloma virus.HSV Herpes simplex virus.

HSVtk Herpes simplex virus thymidine kinase.

HVJ Haemagglutinating virus of Japan. I¹³¹-MIBG I¹³¹-meta-iodobenzylguanidine.

IFs Initiation factors.Kbp Kilo base pair.

KCN Potassium channel.

KTP Potassium titanium phosphate.

Luc Luciferase.

Math1 Mouse atonal homologue 1.

MHC Major histocompatibility complex.

MLV Murine leukemia virus.MOI Multiplicity of infection.

mRNA Messenger RNA.

MSCs Mesenchymal stromal stem cells.

mtDNA Mitochondrial DNA.Myo7a Myosin 7a promoter.

Nd:YAG Neodymium:yttrium-aluminium-garnet.

NDV Newcastle disease virus.NIS Sodium iodide symporter.

NT Neurotrophin.
OC Organ of Corti.

ODN Oligodeoxynucleotide.OP-1 Osteogenic protein-1.Oris Origins of replication.

PDGF Platelet-derived endothelial growth factor.

PEG Polyethylene glycol.

PET Positron emission tomography.

PSA Prostate specific antigen.PSCC Posterior semicircular canal.

PTH Parathyroid hormone.

RCAV Replication-competent adenovirus.

RCHSV Replication-competent herpes simplex viruses.

RDAV Replication-defective adenovirus. RDRV Replication-defective retrovirus.

RF Release factor.
RNA Ribonucleic acid.
rRNA Ribosomal RNA.

RRP Recurrent respiratory papillomatosis.

RV Retrovirus.

RWM Round window membrane. **S value** Sedimentation coefficient.

SCID Severe combined immune deficiency syndrome.

SGC Spiral ganglion cell.

SmRNA Small nuclear RNA.

SSCC Superior semicircular canal.

T Thymine.

TAA Tumour-associated antigens.

TGF-β Transforming growth factor beta.

tk Thymidine kinase.

TM Tympanic membrane.TNF Tumour necrosis factor.

TRAIL TNF-related apoptosis-inducing ligand.

tRNA Transfer RNA.

TRPA1 Transient receptor potential, member A1.

TSG Tumour suppressor gene.

U Uracil.

UTR Untranslated region.

VEGF Vascular endothelial growth factor.

VSV Vesicular stomatitis virus.

VSVG Vesicular stomatitis virus glycoprotein.

List of figures

	Page
Figure	1: Diagram showing different cell structures5
Figure	2: RNA and DNA structure9
Figure	3: Transcription unit
Figure	4: Morphology of a typical adenoviral (Ad) vector17
Figure	5: Genome of a replication-deficient Ad vector18
Figure	6: <i>in vivo</i> and <i>ex vivo</i> gene therapy27
Figure	7: Diagram of the CF maxillary sinus before surgery and after antrostomy placement. The diagram also shows the positioning of the maxillary sinus irrigating catheter48
Figure	8: Gene therapy approaches that target transcription/translation64
Figure	9: Diagrammatic representation of the key components of gene-directed enzyme prodrug therapy (GDEPT)65
Figure	10: Three-dimensional computed tomographic reconstruction of nude rats 120 days after surgery83
Figure	11: 3D CT image of maxilla at 3 months86
Figure	12: Extraembryonic membranes and vessels of the mouse and sheep90
Figure	13: Fetal mouse palatal image 107

List of tables

	Page
Table 1: Features of various gene therapy vectors	24
Table 2: In vivo vs. ex vivo gene transfer	28
Table 3: Differential infectivity of gene therapy vectors by	• •
Table 4: Advantages and disadvantages of vector delivery me	
	34

