COMMUNICATIVE DISORDERS AND AUDIOLOGIC EVALUATION IN CHILDREN WITH AUTISTIC FEATURES

Thesis submitted for partial fulfillment of the Master degree in Phoniatrics by

Reham Ahmed Mohamed

M.B.B.Ch. Cairo University Resident of phoniatrics Hearing and Speech Institute Imbaba

Under supervision of

Prof. Dr. Kamal Labib Samy

Professor of E.N.T. Faculty of Medicine – Cairo University

Dr. Dalia Mostafa Ahmed

Asst. Prof. of Phoniatrics Faculty of Medicine – Cairo University

Dr. Mona Hassan Selim

Asst. Prof. of Audiology
Faculty of Medicine – Cairo University

Faculty of Medicine
Cairo University
2009

THE REPORT OF THE PROPERTY OF بسم الله الرحمن الرحيم إِذَا لَوا سَيْحَانَكَ لَا عَلْمَ لَنَا لَنْتُمْلَّدُ إِنْكُ أَنْكِ الْمُ العَليمُ المَكِيمُ} [البقرة: (32)]

Abstract

I-Introduction and Rationale: Autism is one of the pervasive developmental disorders which constitute a group of developmental disorders of the brain characterized by qualitative impairments in verbal and non verbal communication, social interaction and social imagination with restricted range of interests and often stereotyped repetitive behaviors and mannerism. The assessment of auditory processing in autistic patients using techniques such as otoacoustic emission (OAE), auditory brainstem response (ABR), N100 and P300 still remains to be challenged. *II-Aim of the work:* to assess some of the phoniatric and audiologic results in autistic children. *III-Subjects and Methods:* Each subject in this study (25 autistic children and 25 age matched control group; age ranging from 4-9 years) was subjected to transient and distortion product otoacoustic emissions (OAE), auditory brainstem evoked response (ABR), P300 and N100. Our subjects were also subjected to communication assessment, Intelligent Quotient (I.Q.), Childhood Autism Rating Scale (C.A.R.S) and Sensory Integrative Dysfunction questionnaire. Comparison between the patient and control groups was performed. Correlations between each of these tests and the other tests were also performed. IV-Results: There was a significant difference between autistic and control groups as regards some of the ABR IPLs and amplitudes, P300 and N100 results. There was a correlation between ABR abnormalities with communication function and auditory sensory integration function. There was a significant correlation between N100 and verbal and non verbal communication abilities only. While there was also a significant correlation between P300 latency and amplitude and each of the following: I.Q., C.A.R.S., dynamic assessment of verbal and nonverbal communication, sample of communication function and means and sensory integration dysfunction. V-Conclusion: Autistic children presented with normal hearing sensitivity and cochlear function. ABR results revealed a delay in brainstem propagation. The auditory deficits were more consistently manifested in higher aspects of processings in terms of delayed N100 and P300 latency and small P300 amplitude. N100 is a correlate of the level of communication and language development rather than a marker of autism. P300 abnormalities affect verbal and nonverbal communication, mental development, autistic features and sensory integration function in autism. VI-Recommendations: ABR may be an important prognostic indicator and an objective tool to monitor the progress of auditory training programs. N100 can be used as a valuable tool to evaluate the prognosis of communication intervention programs. P300 can be used as a prognostic method to investigate differential responding to various interventions.

Key words:

Autism, Otoacoustic emission, Auditory brainstem response, N100, P300, Sensory integration dysfunction, Childhood Autism Rating Scale.

Acknowledgement

First of all, thanks and gratitude should be given where it is due, to ALLAH.

I feel grateful and indebted to Prof Dr. Kamal Labib Samy, Professor of E.N.T, Faculty of Medicine, Cairo University for his kind direction, valuable support and encouragement throughout the accomplishment of this thesis.

All my thanks to Assistant Professor Dr. Dalia Mostafa Ahmed, Assistant Professor of Phoniatrics, Faculty of Medicine, Cairo University, because without her dynamic efforts, this work would have never seen light.

I express my sincere thanks and gratitude to Assistant Professor Dr. Mona Hassan Selim, Assistant Professor of Audiology, Faculty of Medicine, Cairo University, for allowing me the benefit from her experience and patience all through my work. Without her guidance, this work would have not been completed.

I would like to thank all my colleagues in the Unit of Phoniatrics, Kasr El-Aini Hospital and the Hearing and Speech Institute for their help and support.

Last but not least, I would like to thank all the participants in this research who helped me to complete this thesis.

Reham Ahmed Mohamed
2009

List of Contents

Introduction and Rationale			
Aim of the Work4			
Review of Literature5	5		
• Incidence and Prevalence of Autism5	í		
• Etiology of Autism and related disorders6	,		
Clinical picture of Autism	. 1		
• Differential diagnosis of Autistic disorder2	26		
• Communication assessment in children			
with Autistic features	13		
Audiological evaluation of Autistic children4	1		
• Lines of intervention for Autism6	53		
Subjects and Methods6	59		
Results9	90		
Discussion1	25		
Conclusion1	48		
Recommendations	50		
Summary1	52		
References1	56		
Appendix			
Arabic Summary			

List of Tables

No.	Title	Page
1a	Dynamic assessment of verbal and non verbal communication (Snell, 2002)	71
1b	Sample of Communicative functions and the means to express them(Bogdashina, 2005)	77
2	Features of sensory integration dysfunction	80
3	Otoacoustic emission (OAE) results of autistic patients as compared to the control group	93
4	Auditory brainstem response latency (ms) and amplitude (µv) results among patient and control groups	95
5	N100 latency results of autistic patients as compared to the control group	96
6	P300 amplitude and latency results of autistic patients as compared to the control group	96
7	Comparison of the sensory integration dysfunction score between autistic and control groups	98
8	Assessment of communication functions and means of autistic patients as compared to the control group	99

No.	Title	Page
9	Dynamic assessment of verbal and non verbal communication results among autistic and control groups	101
10	Correlation coefficient between otoacoustic emission (OAE) and ABR latency and amplitude results in the autistic group	103
11	Correlation coefficient between otoacoustic emission (OAE) and N100 latency results among the autistic children	104
12	Correlation coefficient between otoacoustic emission (OAE) and P300 amplitude and latency results in the autistic children	104
13	Correlation coefficient between otoacoustic emission (OAE) and age and I.Q. among the autistic children	105
14	Correlation coefficient between otoacoustic emission (OAE) and C.A.R.S. results in autistic children	105
15	Correlation coefficient between ABR (latencies and amplitudes) and N100 latency results among autistic children	107
16	Correlation coefficient between ABR (latencies and amplitudes) and P300 latency and amplitude results in the autistic group	108
17	Correlation coefficient between ABR latencies and amplitudes and age and I.Q. among the autistic children	109

No.	Title	Page
18	Correlation coefficient between ABR latencies and amplitudes and C.A.R.S. results among the autistic children	110
19	Correlation coefficient between ABR (latencies and amplitudes) and assessment of communication functions and means results among autistic children	111
20	Correlation coefficient between ABR results and dynamic assessment of verbal and non verbal communication results among autistic children	112
21	Correlation coefficient between ABR latencies and amplitudes and sensory dysfunction scores in the autistic group	113
22	Correlation coefficient between N100 latency results and age and I.Q. in the autistic group	114
23	Correlation coefficient between N100 latency and C.A.R.S. results among the autistic children	
24	Correlation coefficient between N100 latency and total sensory dysfunction and assessment of communication function and means in the autistic children	115
25 late verl	Correlation coefficient between N100 latency results and dynamic assessment of verbal and non verbal communication in the autistic group	116
26	Correlation coefficient between P300 amplitude and latency and N100 latency results in the autistic group	118

No.	Title	Page
27	Correlation coefficient between P300 amplitude and latency and age and I.Q. among the autistic children	119
28	Correlation coefficient between P300 amplitude and latency and C.A.R.S results among the autistic children	119
29	Correlation coefficient between P300 amplitude and latency results and sensory integration dysfunction score among the autistic children	120
30	Correlation coefficient between P300 amplitude and latency results and assessment of communication functions and means in the autistic children	120
31	Correlation coefficient between P300 amplitude and latency results and dynamic assessment of verbal and non verbal communication among the autistic group	122
32	Correlation coefficient between Sensory integration dysfunction scores and age and I.Q. in the autistic group	
33	Correlation coefficient between Sensory integration dysfunction and C.A.R.S. results among the autistic children	124
34	Correlation coefficient between Sensory integration dysfunction and assessment of communication functions and means results in the autistic group	124
35	Correlation coefficient between Sensory integration dysfunction and dynamic assessment of verbal and non verbal communication among the autistic children	124

<u>List of Figures</u>

No.	Title	
1	Afferent auditory pathways	41
2	Human ABR to click stimuli	49
3	ALEPs recorded from the vertex in response to frequent, non target stimuli (bottom) and to rare, target stimuli (top)	53
4	The typical slowing (in milliseconds) of the ABR of an autistic proband (A)compared with a normal control (B)	56
5	Vivosonic integrity TEOAE test result	83
6	Vivosonic integrity DPOAE test result	83
7	Vivosonic integrity ABR test result	85
8	Vivosonic brain evoked response audiometer	86
9	N100 and P300 result of autistic subject	87
10	EMG and event related potential instrument	88
11	Distribution of autistic patients according to C.A.R.S	92
12	Distribution of autistic patients according to I.Q	92

No.	Title	Page	
13	Mean pure tone thresholds (dBHL) in both patients' and control groups under study		
14	Mean amplitude and reproducibility % of TEOAE among the patients and control groups		
15	Mean amplitude of DPOAE among the patients and control groups		
16	Mean ABR latencies (ms) and amplitudes (μv) among the patients and control groups		
17	Mean N100 latency among the patients and control groups		
18	Mean P300 amplitude among the patients and control groups		
19	Mean P300 latency among the patients and control groups		
20	Mean Sensory integration dysfunction score among the patients and control groups		
21	Dynamic assessment of verbal and non verbal communication results in the patient group as compared to the control group		
22	Correlation between communication function and N100 latency (ms) among the autistic group		
23	Correlation between communication function and P300 amplitude (µv) in the patients' group		
24	Correlation between communication		

List of Abbreviations

- ASD Autistic Spectrum Disorder
- AD Autistic Disorder
- AUT Autistic Spectrum
- ABA Applied Behavior Analysis
- ADHD Attention Deficit Hyperactivity Disorder
- AEPs Auditory Evoked Potentials
- ABR Auditory Brainstem Response
- ALEPs Auditory Long-Latency Evoked Potentials
- AMEPs Auditory Middle-Latency Evoked Potentials
- BA Brodmann's Area
- BAEP Brainstem Auditory Evoked Potential
- C.A.R.S Childhood Autism Rating Scale
- CBF Cerebral Blood Flow
- CDD Childhood Disintegrative Disorder
- CNS Central Nervous System
- DPOAE Distortion Product Otoacoustic Emission
- DSM Diagnostic Statistical Manual
- EEG Electro-encephalography
- ERPs Event Related Potentials

•	I.Q	Intelligent Quotient
•	IHC	Inner Hair Cell
•	IPLs	Interpeak Latencies
•	LH	Left Hemisphere
•	MEG	Magneto-Encephalography
•	MMN	Mismatch Negativity
•	MMR	Measles-Mumps-Rubella
•	MRI	Magnetic Resonance Imaging
•	OAE	Otoacoustic Emission
•	OCB	Olivo Cochlear Bundle
•	OHC	Outer Hair Cell
•	PDD	Pervasive Developmental Disorder
•	PDD- NOS	Pervasive Developmental Disorders Not Otherwise Specified
•	PET	Positron Emission Tomography
•	PLS	Pre-school Language Scale–Fourth Edition
•	RDLS	Reynell Developmental Language Scale
•	RH	Right Hemisphere
•	SIB	Self Injurious Behaviors
•	SPC	Sensory Perceptual Checklist – Revised
•	SPECT	Single Photon Emission Computed Tomography

Treatment and Education of Autistic and

related Communication Handicapped

Children/adults

• TOAE Transient Otoacoustic Emission

• TOM Theory of Mind

TEACH

Introduction and Rationale

Autism is one of the pervasive developmental disorders which constitutes a group of developmental disorders of the brain, characterized by qualitative impairments in verbal and non verbal communication, social interaction and social imagination with restricted range of interests and often stereotyped repetitive behaviors and mannerism (*Szatmari*, 2003).

Autism has been the subject of increasing attention from the media, clinicians, and the general public over the past few years. Autism is now the fastest growing disability in the United States. It is more common than pediatric cancer and diabetes combined (*Baird et al.*, 2003), It affects sensori-motor and cognitive domains (*Perry et al.*, 2007).

According to the Diagnostic Statistical Manual DSM-IV, five disorders are identified under the category of pervasive developmental disorders: Autistic disorder, Rett's disorder, Asperger's disorder, Childhood disintegrative disorder and pervasive developmental disorders not other wise specified (*Gillberg and coleman*, 2000).

There are multiple causes of autism: genetics, neuronal maldevelopment in the cerebellum and certain limbic structures and abnormalities in neurotransmitters (*Rapin and Dunn*, 2003).

The question of etiology of autism remains elusive primarily due to the fact that autism does not result from a single dysfunction but is multifaceted in nature. Consequently, attempts to elucidate the underlying