Presby-LASIK: A Corneal Approach To Correct Presbyopia

Essay

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

Ву

Sherif Mostafa El Nashar

(M.B.B.Ch)

Under Supervision of

Prof. Dr. Mervat Salah Mourad

Professor of Ophthalmology

Faculty of Medicine - Ain Shams University

Dr. Mohamed Hanafy Hashem

Lecturer of Ophthalmology

Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2010

ACKNOWLEDGMENTS

First of all I would like to thank **Allah**, the most gracious and the most merciful for His infinite blessings.

I would like to express my real and deepest gratitude, respect and appreciation to **Professor Dr. Mervat Salah**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for her valuable advices, continous support, scientific additions and sincere help throughout the work.

My profound thanks and appreciation to **Dr. Mohamed Hanafy**, Lecturer of Ophthalmology, Faculty of Medicine, Ain

Shams University, for his sincere efforts, fruitful suggestions and valuable advices.

Last but not least, my deepest thanks to my **family**. To them, I owe everything I am or will be.

Sherif Mostafa El Nashar

CONTENTS

Acknowledgements i	
Contentsii	
List of Abbreviations ii	ii
Table of Figuresv	
Introduction v	'ii
Aim of the Workx	(
Chapter One:	
Anatomy & optics of the cornea1	L
Chapter Two:	
Physiology of accommodation & presbyopia	9
Chapter Three:	
Current methods for presbyopia reversal	.32
Chapter Four:	
Excimer laser6	66
Chapter Five:	
Multifocal corneal ablation7	78
Summary & Conclusion	123
References	127
Arabic summary	

LIST OF ABBREVIATIONS

ACS: Anterior Ciliary Sclerotomy

AMO: Allergan Medical Optics

ArF: Argon Fluoride

BCVA: Best Corrected Visual Acuity

CK: Conductive Keratoplasty

D: Dioptre

FDA: Food and Drug Administration

HOA: High Order Aberrations

IOL: Intraocular Lens

IOP: Intraocular Pressure

J: Jaeger

LASEK: Laser Epithelial Keratomileusis

LASIK: Laser In Situ Keratomiluesis

LED: Light Emitting Diode

LRK: Laser Refractive Keratoplasty

MAR: Minimum Angle of Resolution

NBCVA: Near Best Corrected Visual Acuity

Nd YAG: Neodymium Yttrium-Aluminium-Garnet

NUVCA: Near Uncorrected Visual Acuity

NVA: Near Visual Acuity

OZ: Optical Zone

PAC: Pseudoaccommodative Cornea

List of abbreviations

PARM: Presbyopic Avalos Rozakis Method

PCO: Posterior Capsule Opacification

PML: Presbyopia Multifocal LASIK

PMMA: Polymethylmethacrylate

PRELEX: Presbyopic Lens Exchange

PresbyLASIK: Presbyopia Laser in situ Keratomileusis

PRK: Photrefractive Keratectomy

PTK: Phototherapeutic Keratectomy

Q: Quotient of asphericity

RD: Retinal Detachment

SA: Spherical Aberration

SEB: Scleral Expansion Band

SEP: Silicone Expansion Plug

UCVA: Uncorrected Visual Acuity

YAG: Yttrium-aluminium-garnate

TABLE OF FIGURES

Figure	Figure title	Page
no.	Figure title	no.
1	Layers of the cornea	2
2	Corneal endothelium	6
3	Histologic sections of ciliary muscle	10
4	The structure of the human lens	13
5	The structure of the zonule	16
6	Diagram showing the theory of Helmholtz	21
7	Diagram showing Schachar's theory	25
8	Concept of Schachar scleral implants	41
9	Scleral bands in place	42
10	Anterior ciliary sclerotomy	44
11	The ViewPoint CK device	46
12	Sites of CK on the mid-peripheral cornea	47
13	Effect of CK on the cornea	48
14	The ACI-7000 intracorneal inlay	49
15	The inlay in a patient's eye	50
16	Severe deposits around the inlay	51
17	The Tecnis Z900 IOL	55
18	Ray tracing of AMO Array multifocal IOL	56
19	AMO Array multifocal IOL	57
20	Diagram of refractive zones of the ReZoom IOL	58
21	The Crystalens accommodative IOL	60
22	Mood of action of the Crystalens IOL	61
23	The HumanOptics 1CU lens	62
24	Presbyopic phakic IOLs	63
25	The Vision Membrane	65
26	Hyperopic LASIK	86
27	Myopic LASIK	87
28	Presbyopia treated using pseudoaccommodative	91
	cornea (PAC) treatment	

Table of figures

29	Diagram of the ablation profile in Danasoury's study	92
30	Topography and aberration maps of a myopic eye 1 year after surgery in Danasoury's study	94
31	Schematic diagram of a presbyopic eye in which hyperopic and myopic LASIK has been done.	96
32	Ablation pattern for an attempted change in asphericity of ΔQ	99
33	Diagram showing the ablation profile of Peripheral Multifocal LASIK (PML)	102
34	The aberrometric map obtained from an emmetropic presbyope before and 18 months after PML treatment	103
35	The aberrometric map obtained from myopic presbyope before and 18 months after PML treatment	104
36	Wave front map of a hyperopic presbyopic eye	106
37	Postoperative wave front map of the same eye in figure (37)	107
38	Postoperative wave front map of an eye treated with the AMO VISX S4 for hyperopia with presbyopia	109
39	Multifocal corneal ablation with central near zone using the VISX CustomVue System	111
40	The optical profile of central presbyLASIK	114
41	Postoperative ablation profiles by the CSO at 6 months following presbyLASIK surgery using Technovision LASIK	115
42	The concept behind presbyMAX	117
43	Preoperative an 3-months postoperative corneal topographic profiles of both eyes of a patient undergoing PresbyMax for myopia	118
44	Postoperative corneal wavefront after presbyMAX correction	119

INTRODUCTION

Presbyopia is the most common refractive error. It is an age-related visual impairment, resulting from the gradual decrease in accommodation. Without optical correction, presbyopia results in an inability to perform once were effortless near tasks at a customary working distance without experiencing visual symptoms (*Patorgis*, 1987).

Because the need to read and work at near and intermediate distances is important in all industrial societies, presbyopia has both clinical and social significance (*Mancil*, 1998).

A variety of options are available for correction of presbyopia. These options could be optical correction as; *spectacle lenses, contact lenses*. Or they could be surgical correction as; *scleral expansion, conductive keratoplasty, small diameter corneal inlays, multifocal IOL implants* and finally the use of *excimer laser*.

Conductive keratoplasty is an effective and safe procedure for the treatment of presbyopia, but it is limited by its monocular application (McDonald, 2005). Scleral expansion is another surgical approach to correct presbyopia but it is prone to regression .(Malecaze, 2001) Corneal inlays are not popular and are not recommended in current practice due its dangerous surgical technique and potential complications such as epithelial opacification, flap complications, and infections .(Alió 2004) The performance of different types of multifocal

IOLs is constantly being improved, but the IOLs cuase a decrease in near vision contrast sensitivity .(Montés-Micó, 2003)

Researchers are increasingly optimistic about the potential of multifocal LASIK as a treatment for presbyopia. The concept first attracted attention when some presbyopic hyperopic patients reported both improved near and distance vision after undergoing LASIK for far vision correction. Careful corneal analysis of those cases led to the appreciation that it might be possible to use excimer laser to intentionally create a multifocal cornea. Studies show the multifocal ablation procedure is very safe and is able to provide reasonable reading vision without compromising distance outcomes (*Guttman*, 2003).

Various presbyopic strategies using the excimer laser have also been brought forward. Beside monovision, the creation of multifocal cornea represents an attractive option. This procedure is also called "*Presby-LASIK*". (*Becker*, 2007)

Presby-LASIK treatment uses the principles of LASIK surgery to create multifocal corneal surface aimed at reducing near vision spectacle dependence in presbyopic patients. There are two main different techniques for presby-LASIK treatment. In the first technique, known as *central presby-lasik*, a central area is created for near vision and a peripheral area is created for central vision. Whereas in the second technique, known as *peripheral presby-LASIK*, the central area is for distance vision and the mid peripheral area is for

Introduction

near vision. Both techniques create a multifocal pseudoaccommodative corneal surface (*Pinelli*, 2008).

While the data are limited, the excimer laser offers some potential advantages over other methods to manage presbyopia. The procedure is less invasive than scleral expansion or a multifocal IOL, it can concomitantly correct the near and distance refractive errors. One of the advantages of this type of treatment is that it is centered on the visual axis of the eye rather than on the corneal apex like many multifocal contact lenses and in this way, decreases the induced loss of optical performance due to axis mismatching .(Cheng et al, 2004)

Continued improvement of the multifocal pattern, using computer modeling that considers patient's pupil size, treatment diameter and corneal shape, along with data from long term studies, may further improve this treatment (AAO, 2006).

AIM OF WORK

The aim of this essay is to review and study the use of presby-LASIK as a new technique for treatment of presbyopia. Its various advantages and drawbacks will be portrayed, in comparison to other techniques.

استخدام الليزك في تعديل القرنية لاصلاح ابصار الشيخوخة (البريسبي- ليزك)

مقالة

توطئة للحصول على درجة الماجستير فى طب وجراحة العيون مقدمة من

الطبيب/ شريف مصطفى النشار بكالوريوس الطب والجراحة تحت اشراف

أ در میرفت صلاح مراد

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

د/ محمد حنفی هاشم

مدرس طب وجراحة العيون كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2010

Presby-LASIK: A Corneal Approach To Correct Presbyopia

By Sherif Mostafa El Nashar

Abstract

Presbyopia is the most common refractive error. It is an age-related visual impairment, resulting from the gradual decrease in accommodation. Without optical correction, presbyopia results in an inability to perform once were effortless near tasks at a customary working distance without experiencing visual symptoms.

A variety of options are available for correction of presbyopia. These options could be optical correction as; *spectacle lenses*, *contact lenses*. Or they could be surgical correction as; *scleral expansion, conductive keratoplasty, small diameter corneal inlays, multifocal IOL implants* and finally the use of *excimer laser*.

Researchers are increasingly optimistic about the potential of multifocal LASIK as a treatment for presbyopia. The concept first attracted attention when some presbyopic hyperopic patients reported both improved near and distance vision after undergoing LASIK for far vision correction. Careful corneal analysis of those cases led to the appreciation that it might be possible to use excimer laser to intentionally create a multifocal cornea. Studies show the multifocal ablation procedure is very safe and is able to provide reasonable reading vision without compromising distance outcomes.

Various presbyopic strategies using the excimer laser have also been brought forward. Beside monovision, the creation of multifocal cornea represents an attractive option. This procedure is also called "*Presby-LASIK*".

Presby-LASIK treatment uses the principles of LASIK surgery to create multifocal corneal surface aimed at reducing near vision spectacle dependence in presbyopic patients. There are two main different techniques for presby-LASIK treatment. In the first technique, known as *central presby-lasik*, a central area is created for near vision and a peripheral area is created for central vision. Whereas in the second technique, known as *peripheral presby-LASIK*, the central area is for distance vision and the mid peripheral area is for near vision. Both techniques create a multifocal pseudoaccommodative corneal surface.

While the data are limited, the excimer laser offers some potential advantages over other methods to manage presbyopia. The procedure is less invasive than scleral expansion or a multifocal IOL, it can concomitantly correct the near and distance refractive errors. One of the advantages of this type of treatment is that it is centered on the visual axis of the eye rather than on the corneal apex like many multifocal contact lenses and in this way, decreases the induced loss of optical performance due to axis mismatching.

Despite encouraging initial clinical results, various questions are unsolved. There are no long-term results, and most trials include hyperopic patients. PresbyLASIK was often performed on relatively young patients, with no or little presbyopia (fewer than 2.00). It is unknown whether or not a retreatment is needed later. Safety issues including impairment of contrast sensitivity and unwanted optical aberrations with appearance of glare and halos should be addressed in future studies.

Chapter one

ANATOMY & OPTICS OF THE CORNEA

A-Anatomy of the cornea

The cornea is a transparent avascular tissue that forms together with the precorneal tear film the major refracting surface for the eye .The diameter of the corner is 11.6 to 12.6 mm horizontally and 10.6 to 11.7 mm vertically .The thickness of the cornea varies from 0.50 to 0.56 mm centrally to 0.63 to 0.67 mm peripherally. The radius of curvature of the anterior surface of the cornea ranges from 7.2 to 8.4 mm, the radius of curvature of the posterior surface ranges from 6.2 to 6.8 mm (*Snell 1998*).