

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Design of Low Power CMOS Direct Digital Frequency Synthesizer

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

Submitted by

Hesham AbdElSalam Ahmed Omran

B.Sc. in Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2007

Supervised By

Prof. Dr. Magdi Mahmoud Ibrahim Prof. Dr. Khaled Wagih Sharaf

Cairo, 2010

بِسَمِ ٱللَّهِ ٱلرَّحْمَانِ ٱلرَّحِيمِ

قال الله تعالى:

وَلَكِكَنَّ أَكْثَرُ ٱلنَّاسِ لَا يَعْلَمُونَ ١

يَعْلَمُونَ ظَهِرًا مِّنَ ٱلْحَيَوٰةِ ٱلدُّنْيَا وَهُمْ عَنِ

ٱلْاَحِرَةِ هُمْ غَنفِلُونَ ١

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Examiners' Committee

Hesham AbdElSalam Ahmed Omran

Name:

Date: /09/2010

Thesis:	Design of Low Power CMOS Direct Digital Fr	requency Synthesizer
Degree:	Master of Science in Electrical Engineering	
Title, Na	me and Affiliation	Signature
	. Serag El-Deen Habeeb	
Cairo Un	iversity, of Engineering,	
-	cs and Communications Engineering Dept.	
Duof Du	Hisham Haddana	
	. Hisham Haddara ns University,	
Faculty of	of Engineering,	
Electroni	cs and Communications Engineering Dept.	
	. Magdi Mahmoud Ibrahim	
	ns University,	
-	of Engineering, cs and Communications Engineering Dept.	
	. Khaled Wagih Sharaf ns University,	
	of Engineering,	
•	cs and Communications Engineering Dept.	

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Hesham AbdElSalam Ahmed Omrar
Signature:
Date:

Curriculum Vitae

Name of Researcher Hesham AbdElSalam Ahmed Omran

Date of Birth 12.Jan.1985

Place of Birth Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2007

ٱلْحَمْدُ لِلَّهِ رَبِّ ٱلْعَلْمِينَ

ACKNOWLEDGEMENT

All praise is due to ALLAH, Lord of the worlds, The Most Merciful, Whose help and bounties are ever dominating throughout my life. If it were not for ALLAH's help and mercy, I would have never been able to complete this work and write these words.

My deep gratitude then goes to my family. I would like to express my deepest love, appreciation, and gratitude to my parents, whom I do not know how to reward. Their love, care, dedication, and support cannot be described in words. I would like to thank my brothers Ahmed and Haitham for their encouragement and support. Special thanks for Haitham for his nice companionship in the Master's period and for introducing me to Lyx.

I would like to thank my supervisors Prof. Dr. Magdi Ibrahim and Prof. Dr. Khaled Sharaf for their help and support. My deep thanks go to Dr. Khaled Sharaf for his advice, ideas, hints, and guidance.

I would like to thank all my younger colleagues in the Integrated Circuits Lab (ICL) for their useful discussions, encouragement, and their noteworthy support with CAD tools. Special thanks for Ahmed ElKouly for his valuable technical discussions. It is worth noting that Chapter 5 was triggered by a hint from Ahmed in one of these discussions. Of course I can not forget my elder colleagues and friends in ICL, especially Ahmed Ashry, Mohamed ElBadry, and Ayman Osama. Although thousands of kilometers away, they did not hesitate to offer their help through e-mail and during their vacations.

I would like to thank my colleagues in SWS, especially Bassem Zaki, Mohamed ElKouly, and Nabil Sinoussi. Special thanks for my dear managers: Dr. Amr Hafez and Dr. Amr Wassal.

I would like to thank my friend Mohamed Omar for the great effort he made in reviewing the thesis and for his help with Cadence tools. Many thanks go to my B.Sc. graduation project colleagues *(OFDMers)* for providing me with Xilinx FPGA kit. My deep appreciation goes to the thesis reviewing team: Ahmed ElKouly, Ahmed Mokhtar, Mohamed AbdElHakim, Mohamed Hafez, and Mohamed Weheiba.

ABSTRACT

Hesham AbdElSalam Omran, Design of Low-Power CMOS Direct Digital Frequency Synthesizer, Master of Science thesis, Ain Shams University, 2010.

In this thesis, the design of low-power direct digital synthesizer is investigated. The continuous down scaling of minimum feature size in CMOS technology allowed whole systems to be implemented on a single chip. These systems incorporate different blocks that require unrelated clock signals with certain frequencies. This raises the need for a frequency synthesis architecture with fine resolution and low-power consumption that can be integrated in modern deep-submicron digital CMOS technologies.

After a brief overview on different frequency synthesis architectures, phase interpolation direct digital synthesizer (DDS) is thoroughly discussed as the main architecture highlighted in the thesis.

An implementation of phase interpolation DDS suitable for FPGA environment is presented. The synthesizer is fully implemented on FPGA and does not require any external analog components, while achieving sub-Hz tuning resolution and sub-µs switching time. Experimental measurements validate system operation with spurious free dynamic range (SFDR) greater than 40 dB.

A DDS-based architecture for jitter-free fractional divider is proposed. Mathematical analysis is provided in addition to simulation results. The design is implemented on FPGA to verify its operation. Measurement results are presented.

An architecture targeted for ASIC implementation is also presented. The design is implemented in $0.13~\mu m$ CMOS technology. In addition to being fully monolithic, the design achieves low-power and fine resolution. The design can also be extended to provide multi-channel operation.

Key words: Direct digital synthesizer (DDS), clock generator, fractional divider, phase interpolation, field programmable gate array (FPGA), CMOS, low-power.

SUMMARY

This thesis demonstrates the design of phase interpolation direct digital synthesizer (DDS). The thesis is in **seven** chapters, organized as follows:

Chapter One serves as an introduction. The concept of frequency synthesis is introduced together with the main specifications of a frequency synthesizer. The chapter further illustrates the motivation for the thesis and the thesis outline is presented.

Chapter Two contains a brief overview of different frequency synthesis architectures. The concept of direct and indirect synthesis is introduced. The advantages and disadvantages of each architecture are discussed.

Chapter Three provides a detailed discussion of phase interpolation direct digital synthesizer (DDS), which is the architecture highlighted in this thesis. The idea of operation from both time domain and frequency domain perspectives is presented. A detailed literature survey is then done on different implementation approaches pointing out their pros and cons.

Chapter Four presents an implementation of phase interpolation DDS on FPGA. After a short overview on FPGA technology, the system architecture and blocks are described. Simulation and measurement results in both time domain and frequency domain are discussed.

Chapter Five introduces a DDS-based architecture for a jitter-free fractional divider. The basic idea is illustrated and simulation results are presented. The design is implemented on FPGA and measured in lab.

Chapter Six introduces an ASIC implementation of a phase interpolation DDS in $0.13 \ \mu m$ CMOS technology. The design incorporates a phase locked loop (PLL). Both system and circuit design levels of the PLL are presented. The design of a digital-to-time converter (DTC) is also presented.

Chapter Seven contains final conclusions. The work discussed in this thesis is compared with work published in the literature. Some ideas for future work are then suggested.

Contents

1	Intr	oductio	n		1
	1.1	Introdu	action to	Frequency Synthesis	1
	1.2	Motiva	tion		3
	1.3	Thesis	Outline		5
2	Free	quency	Synthes	sizers Architectures	7
	2.1	Introdu	ction		7
	2.2	Indirect	t Synthes	sizers	7
		2.2.1	Integer-1	N PLL	8
		2.2.2	Fraction	al-N PLL	9
	2.3	Direct 3	Synthesiz	zers	10
		2.3.1	Direct A	nalog Synthesizer	10
		2.3.2	Direct D	rigital Frequency Synthesizer	10
			2.3.2.1	Conventional DDS	11
			2.3.2.2	Phase Interpolation DDS	16
		2.3.3	Direct D	rigital Period Synthesizer	17
	2.4	Hybrid	Synthesi	izers	19
	2.5	Chapte	r Summa	ary	21

3	Pha	se Interpolation Direct Digital Synthesizer	23
	3.1	Introduction	23
	3.2	Basic Idea	23
		3.2.1 Time Domain Perspective	25
		3.2.2 Frequency Domain Perspective	29
	3.3	Analog Approach	32
	3.4	Digital Approach	38
	3.5	Chapter Summary	42
4	A	All Dividal Dividal Countries Euler Local	
4		All-Digital Direct Digital Synthesizer Fully Implemented FPGA	45
	4.1	Introduction	45
	4.2	Short Overview on FPGAs	46
	4.3	System Description	46
		4.3.1 Accumulator and Divider	48
		4.3.2 Phase Interpolation	48
	4.4	Simulation Results	49
	4.5	Experimental Results	49
		4.5.1 Implementation Details	49
		4.5.2 Time Domain Measurements	51
		4.5.3 Frequency Domain Measurements	51
	4.6	Chapter Summary	56

5	A J	itter-F	ree DDS	S-Based Fractional Divider	59
	5.1	Introd	luction		59
	5.2	Basic	Idea		59
	5.3	System	n Archite	cture	62
	5.4	Simula	ation Res	ults	66
	5.5	Exper	imental F	Results	68
		5.5.1	Impleme	entation Details	68
		5.5.2	Time De	omain Measurements	69
		5.5.3	Frequen	cy Domain Measurements	70
	5.6	Chapt	er Summ	ary	72
6		Phase plication	-	ation Direct Digital Synthesizer for SoC	73
	6.1				73
	6.2	Syster	n Descrip	${\rm tion} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	74
	6.3	Design	n of Phase	e Locked Loop	74
		6.3.1	System	Level Design	77
			6.3.1.1	Choice of Loop Parameters	78
			6.3.1.2	MATLAB Simulation	84
			6.3.1.3	Behavioral Simulation	84
		6.3.2	Transist	or Level Design	87
			6.3.2.1	Voltage Controlled Oscillator	87
			6.3.2.2	Phase Frequency Detector	87
				Charge Pump	91

			6.3.2.4	Loop Filt	er		•	 		 •	•	•	 96
			6.3.2.5	Loop Div	ider .			 					 96
		6.3.3	Integrati	ion and Ve	rificat	ion		 					 96
	6.4	Design	of DTC					 					 98
		6.4.1	Interpola	ation Cour	nter .			 					 98
		6.4.2	Gated D	TC				 					 101
	6.5	Chapte	er Summa	ary				 					 107
7	Con	chisio	ns and E	uture Wa	ork								100
7	Con	clusio	ns and F	uture Wo	ork								109
7	Con 7.1			uture Wo				 					
7		Conclu	isions										109
	7.1 7.2	Conclu	work .	• • • • •									109
\mathbf{A}	7.1 7.2 VH	Conclu	usions Work . de	• • • • •									109 113

List of Abbreviations and Symbols

A/D Analog-to-digital.

ACC Accumulator.

ASIC Application specific integrated circuit.

ASK Amplitude shift keying.

CAD Computer aided design.

CMOS Complementary metal oxide semiconductor.

CORDIC Co-ordinate rotation digital computer.

D/A Digital-to-analog.

DAC Digital-to-analog converter.

DCM Digital clock manager.

DCVSL Differential cascode voltage switch logic.

DDPS Direct digital period synthesizer.

DDS Direct digital synthesizer.

DLL Delay locked loop.

DPC Digital-to-phase converter.

DSP Digital signal processing.

DTC Digital-to-time converter.

DW Delay word.

ESD Electrostatic discharge.

FB Feed-back.

FCW Frequency control word.

FF Feed-forward. Flip-flop.

FOM Figure of merit.

FPGA Field programmable gate array.

FSK Frequency shift keying.

HDL-AMS Hardware description language - analog/mixed signal.

IC Integrated circuit.

INC Increment.

LPF Low pass filter.

LUT Look-up table.

NA Not available.

NCO Numerically controlled oscillator.

PD Phase detector.

PFD Phase-frequency detector.

PINC Phase increment.

PLL Phase locked loop.

PSK Phase shift keying.

PVT Process, voltage, and temperature.

RF Radio frequency.

ROM Read-only memory.

S/H Sample and hold.

SFDR Spurious free dynamic range.

SNR Signal to noise ratio.

SoC System-on-a-chip.

SR Spur reduction.

VCO Voltage controlled oscillator.

ZOH Zero-order hold.

 α^2 PLL loop filter pole-to-zero ratio.

 Δf Frequency step (resolution) (Hz).

 ω_n Second order system natural frequency (rad/s).

 ω_{ref} Reference frequency (rad/s).

 ω_u Unity gain frequency (cross-over frequency) (rad/s).

 ϕ_m Phase margin (degree).