Serum Resistin Hormone In Protein Energy Malnutrition

A THESIS

Submitted For Partial Fulfillment Of Master Degree in Pediatrics

BY

Reda Mohamed Abd-Rabo MB, B. CH., Alazhar University

Under the supervision of

Prof. Dr. may Fouad Nassar

Professor of of Pediatrics Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Rasha Hussein Aly

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Rasha Mohamed Mamdouh

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

نسبة هرمون الرزيستين في مصل دم الأطفال المصابة بسوء التغذية

رسالة ماجستير

مقدمة من / رضا محمد عبدربة فياض

المشرفون

اد/ مي فؤاد نصار أستاذ طب الأطفال كلية الطب جامعة عين شمس

ام.د/ رشا أستاذ مساعد الباثولوجيا كلية الطب جامعة ام.د/ رشا حسين على محمد ممدوح أستاذ مساعد طب الأطفال الإكلينيكية كلية الطب جامعة عين شمس عين شمس

جامعة عين شمس كلية الطب 2010

ACKNOWLEDGMENT

First and foremost, I feel always indebted to **Allah**, the most beneficent and merciful.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. may Fouad Nassar** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her generous supervision and valuable support. She gave much of her precious time.

Words fail to express my deep appreciation to **Assist. Prof. Dr. Rasha Hussein Aly** Assistant Professor of Pediatrics,
Faculty of Medicine, Ain Shams University, for her kind guidance, energetic help, assistance and remarkable efforts.

I would like to express my deepest thanks and gratitude to **Assist. Prof. Dr. Rasha Mohamed Mamdouh** Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her help and assistance.

I am especially indebted to all my **Professors** and **Colleagues** in the Department of Pediatrics, Faculty of Medicine, Ain Shams University.

Contents

List of abbreviation	i
List of tables	iii
List of figures	viii
INTRODUCTION AND	
AIM OF THE WORK	1
REVIEW OF LITERATURE	3
Protein Energy Malnutrition	3
Adepokines	41
Resistin	43
MATERIAL AND METHODS	69
Subjects	69
Methods	70
Statistical Methods	75
RESULTS	77
DISCUSSION	123
SUMMARY	137
CONCLUSION	144
RECOMMENDATIONS	145
REFERENCES	146
ARABIC SUMMARY	
(الملخص العربي)	1

Abbreviations

ADSF	Serine/cysteine-rich adipocyte-Specific Secretory Factor"
ANG II	Angiotensinogen II
ARI	Acute respiratory infection
ASO	Antisense oligodeoxynucleotide
BMI	Body mass index
BN	Bulimia nervosa
CCAT	Calcium channel associated transcription regulator
СНІ	Creatinine height index
C/EBP a	Enhancer-binding protein alpha
DM	Diabetes mellitus
CR	calorie restriction
ELISA	Enzyme-Linked Immunosorbent Assay
ET1	Endothelin 1
FA	Fatty acids
FFA	Free fatty acids
FAA	Free amino acids
FIZZ	Tissue-specific cytokines (found in inflammatory
	zones)
GH/IGF-I	Growth hormone/ Insulin like growth factor I
GLUT4	Glucose transporter 4
HDL	High-density lipoprotein -cholesterol,
НС	Head circumference
HOMA	Homeostasis model assessment
ICAM1	Intracellular adhesion molecule-1
IGFs	Insulin-like growth factors
IRS-1	insulin receptor substrate 1
IL-6	Interleukin-6
KWO	Kwashiorkor
MAC	Mid-arm circumference
M-CSF	Macrophage colony stimulating factor
mRNA	Messenger RNA
NCHS	American National center for health statistics
NFκB	Nuclear factor kappa B
NO	Nitric oxide
ORS	Oral rehydration solution
PAI-1	Plasminogen activator inhibitor-1
P.	Protein expression
PEM	Protein energy malnutrition

PI3K	Phosphatidylinositol-3-kinase
PKA	Protein kinase A
PKC	Protein kinase C
PMNG1	Parasite induced Macrophage ± Novel. Gene 1
PPARγ	Peroxisome proliferator-activated receptor γ
P-AN	Binge/purge subtype of anorexia nervosa
RBP	Retinol-binding protein
Retn	Human resistin gene
RELMs	Resistin like molecules
RT-PCR	Reverse transcription polymerase chain reaction
RV	Reference values
R-AN	Restrictive subtype of anorexia nervosa
SAA	Serum amyloid A
S.C	Subcutaneous
SFT	Skin fold thickness
SGA	Small for gestational age
SNP	Single nucleotide polymorphisms
SOCS-3	suppressor of cytokine signaling 3
SSCP	Single-stranded conformation polymorphism
sTNFR-p55 and	Soluble receptors of tumor necrosis factor alpha
sTNFR-p75	
TBPA	Thyroxin-binding pre-albumin
TLC	Total leucocytic count
TNF-α	Tumor Necrosis Factor-α
TRF	Transferrin
TRAF3	Receptor-associated factor-3
TZD	Thiazolidinediones
VCAM1	Vascular cell-adhesion molecule-1
WHO	World Health Organization
Wt/Ht	Weight for height

List of tables

Table No	Title	Page No
1-	Welcome classification of PEM (Wellcome, 1970)	6
2-	Classification of malnutrition based on weight for height	7
3-		8
4-	Weight for height cut-off point for Classification malnourished children.	8
5-	Classification of malnutrition in absence of edema.	9
6-	Treatment of clinical vitamin A deficiency	34
7-	Recipes for F-75 and F-100 feeds	35
8-	Distribution of mRNA and protein expression of resistin and RELM- β in rodents and humans, and RELM- α and RELM- γ in rodents .	50
9-	Comparison of the age distribution among protein energy malnutrition (PEM) patients and controls.	77
10-	Comparison of sex distribution among patients and controls.	77
11-	Comparison of anthropometric measurements between all protein energy malnutrition (PEM) patients before nutritional rehabilitation and the controls	78
12-	Comparison of anthropometric measurements among non edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation and the controls	79
13-	Comparison of anthropometric measurements among edematous PEM patients before nutritional rehabilitation and controls.	80
14-	Comparison of anthropometric measurements among all protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	81
15-	Comparison of anthropometric measurements among non edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	82
16-	Comparison of anthropometric measurements among edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	83
17 -	Comparison of anthropometric measurements among all	84

	protein energy malnutrition (PEM) patients before and after	
18-	nutritional rehabilitation Comparison of anthropometric measurements among non edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
19-	Comparison of anthropometric measurements among edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
20-	Comparison of anthropometric measurements among non edematous and edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation.	
21-	Comparison of anthropometric measurements between non edematous and edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation.	
22-	Comparison of laboratory data among all protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	
23-	Comparison of laboratory data among non edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	
24-	Comparison of laboratory data among edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	
25-	Comparison of laboratory data among all protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	
26-	Comparison of laboratory data among non edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	
27-	Comparison of laboratory data between edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	
28-	Comparison of laboratory data between protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
29-	Comparison of laboratory data between non edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
30-	Comparison of laboratory data among edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
31-	Comparison of laboratory data among non edematous and	99

	edematous protein energy malnutrition (PEM) patients	
32-	before nutritional rehabilitation Comparison of laboratory data between non edematous and edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation.	100
33-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among all protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	
34-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among non edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	102
35-	comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation and controls.	103
36-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among all protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	
37-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among non edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	105
38-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation and controls.	
39-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among all protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	
40-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among non edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation.	108
41-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among edematous protein energy malnutrition (PEM) patients before and after nutritional rehabilitation	
42-	Comparison of the serum fasting levels of (resistin,	110

	insulin and glucose) and HOMA among non edematous	
	and edematous protein energy malnutrition (PEM) patients before nutritional rehabilitation.	
43-	Comparison of the serum fasting levels of (resistin, insulin and glucose) and HOMA among non edematous and edematous protein energy malnutrition (PEM) patients after nutritional rehabilitation.	110
44-	Comparison of the mean rate of change of the serum fasting levels of (resistin, insulin and glucose), HOMA, hemoglobin, albumin and total leucocytic count among all, non edematous and edematous protein energy malnutrition (PEM) patients.	112
45-	Comparison of the serum fasting levels of resistin among male and female of PEM patients before nutritional rehabilitation.	113
46-	Comparison of the serum fasting levels of resistin among male and female of PEM patients after nutritional rehabilitation.	113
47-	Comparison of the serum fasting levels of resistin among males and females of controls.	113
48-	Correlations between resistin and anthropometric measures and calculations in all patients before rehabilitation.	114
49-	Correlations between resistin and anthropometric measures and calculations in non edematous patients before rehabilitation.	114
50-	Correlations between resistin and anthropometric measures and calculations in edematous patients before rehabilitation.	114
51-	Correlations between resistin and laboratory data in all patients before rehabilitation.	115
52-	Correlations between resistin and laboratory data in non edematous patients before rehabilitation.	115
53-	Correlations between resistin and laboratory data in edematous patients before rehabilitation.	115
54-	Correlations between resistin and laboratory data in all patients after rehabilitation.	115
55-	Correlations between resistin and laboratory data in non edematous patients after rehabilitation.	116
56-	Correlations between resistin and laboratory data in edematous patients after nutritional rehabilitation.	116
57-	Correlations between resistin and laboratory data in controls	116
58-	Correlations between resistin and the serum fasting levels	117

	of (insulin and glucose) and HOMA among all patients	
	before nutritional rehabilitation	
59-	Correlations between resistin and the serum fasting levels of (insulin and glucose) and HOMA among non	117
	edematous patients before nutritional rehabilitation	
60-	Correlations between resistin and the serum fasting levels	118
	of (insulin and glucose) and HOMA among edematous patients before nutritional rehabilitation	
61-	Correlations between resistin and the serum fasting levels of (insulin, glucose) and HOMA among all patients after nutritional rehabilitation	118
62-	Correlations between resistin and the serum fasting levels of (insulin, glucose) and HOMA among non edematous patients after nutritional rehabilitation.	119
63-	Correlations between resistin and the serum fasting levels of (insulin, glucose) and HOMA among edematous patients after nutritional rehabilitation.	119
64-	Correlations between resistin and the serum fasting levels of (insulin, glucose) and HOMA among controls.	120
65-	Correlations between rate of change of serum fasting levels of (resistin, insulin, glucose) and HOMA among all PEM patients.	120
66-	Correlations between rate of change of serum fasting levels of (resistin, insulin, glucose) and HOMA among non edematous PEM patients	121
67-	Correlations between rate of change of serum fasting levels of (resistin, insulin, glucose) and HOMA among edematous PEM patients	121
68-	Regression analysis between initial resistin and initial serum fasting levels of (insulin, glucose) total leucocytic count, albumin and anthropometric measures in all PEM patients.	122
		•

List of figures

Fig. No	Title	Page No.
1	breakdown of endocrinal adjustments leading to the clinical features of Kwashiorkor.	15
2	Ribbon diagram representations of resistin.	47
3	Role of resistin in obesity-associated insulin resistance.	57
4	Comparison of anthropometric measurements.	89
<u>5</u>	Comparison of the serum fasting levels of (resistin, insulin and glucose).	111

INTRODUCTION AND AIM OF THE WORK

Protein Energy Malnutrition (PEM) is the most deadly form of malnutrition. It is the primary or associated cause of around half of the nearly 11 million annual deaths among children under five, 30 000 each day (**Brundtland**, 2005).

Deficiency of a single nutrient is an example of under nutrition or malnutrition. Protein/energy malnutrition (PEM), for example, is manifested by inadequate dietary intake of protein and energy, either because the dietary intakes of these two nutrients are less than required for normal growth or because the needs for growth are greater than can be supplied by what, otherwise would be adequate intake for growth. however, PEM is almost always accompanied by deficiencies of other nutrients (Heird, 2004)

Malnutrition in general and dietary protein deprivation in particular are characterized in humans by a low basal plasma insulin together with low glucose levels (**Picarel-Blanchot et al.**, 1995).

Resistin is a hormone secreted by adipose tissue. Among the hormones synthesized and released from adipose tissue (adiponectin, angiotensin, estradiol, IL-6, leptin, PAI-1, TNF- α , and resistin) (**Adeghate**, 2004). Resistin is an adipocytokine that may link obesity with insulin resistance and diabetes. (**Steppan et al., 2001**) reported serum resistin levels to be elevated in obese mice and to be decreased by thiazolidinediones. They also showed that administration of antiresistin antibodies improved insulin sensitivity. However, subsequent studies produced disparate findings regarding the role of resistin in obesity and insulin resistance (**Way et al., 2001**). Although serum resistin levels were

reported to be elevated in obese (Azuma et al., 2003), and diabetic patients (Zhang et al., 2003, Fujinami et al., 2004) conflicting results were also presented (Silha et al., 2003).

plasma concentrations of several mediators of the inflammatory cascade. (interleukin 6 (IL-6), C-reactive protein, and the soluble receptors of tumor necrosis factor alpha (sTNFR-p55 and sTNFR-p75)) was found to be greater in children with PEM. particularly in those with kwashiorkor (increased inflammatory reactivity may contribute to edema formation in edematous malnutrition) (Sauerwein et al., 1997).

Resistin has been shown to increase expression of several proinflammatory cytokines including (interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-12 (IL-12), and tumor necrosis factor- α (TNF- α) in an NF κ B-mediated fassion (**Milan et al., 2002, Silswal et al., 2005**).

It has also been demonstrated that resistin upregulates intracellular adhesion molecule-1, vascular cell-adhesion molecule-1 and CCL2, all of which are occupied in chemotactic pathways involved in leukocyte recruitment to sites of infection (Verma et al., 2003) Resistin does indeed bear features of a pro-inflammatory cytokine and could act as a key node in inflammatory diseases with or without associated insulin resistance (Nagaev et al., 2006). So Resistin can be of value in diagnosis and or prognosis of PEM.

Thus Our aim of the present work is to assess the serum resistin level in infants or children with PEM, before and after rehabilitation to examine the possibilities of its use as a diagnostic and prognostic tool and whether or not it correlates to severity of PEM.

Protein Energy Malnutrition

Definitions:

Malnutrition is a state of decreased intake of calories or micronutrients (vitamins and trace elements) resulting in a risk of impaired physiological functions associated with morbidity and mortality (Spiekerman, 2000).

Protein energy malnutrition (PEM) is a spectrum of conditions due to varying proportions of protein and calorie deficiencies (Curran and Barness, 2004).

Since several vitamin and mineral deficiencies are associated with PEM, the American authors prefer to use the term multi- deficient disease (Brasseur et al., 1994).

Marasmus is the most common form of PEM. It is due to severe caloric depletion and is diagnosed in the presence of clinical muscle wasting, loss of subcutaneous fat and absence of edema (Gernaat and Voorhoeve, 2000).

Kwashiorkor (KWO) is a clinical syndrome which results from acute deficiency of proteins and inadequate caloric intake. It is diagnosed in the presence of edema, mental apathy and one or more symptoms or signs (hepatomegaly, diarrhea, hair discoloration, skin changes and muscle wasting) (Gernaat and Voorhoeve, 2000).

Marasmic kwashiorkor is a combination of chronic energy deficiency with acute or chronic protein deficiency (**Gernaat and Voorhoeve, 2000**).