

Women's College For Arts, Science and Education Home Economics Department

Thesis submitted for requirement of MSc (Home Economics- Textile and Clothing Department)
Entitled:

"Implementing of Six Sigma Process Improvement Frame Work in Production and Properties of Protective Garment Against Foul Weathering"

By: Shimaa Hassen Abd El Rahman Mosa

Supervised by:

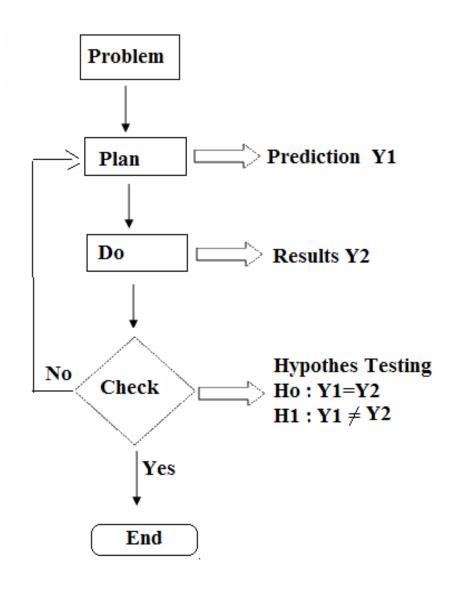
Prof .Dr. Wafaa A.Elsayed Prof.Dr. Adel Mohamed El Hadidy

Prof.of Textiles, Women's College, Ain shams University. Prof . of Textile Engineering, Faculty of Engineering, Mansoura University.

Acknowledgement

Thanks to God before and after

I am grateful to *prof. Dr.*, Adel Mohamed El - Hadidy Professor of Textile Engineering for his sincere guidance and constructive suggestions throughout all the phases of this work.


It is also pleasure for me to acknolowledge *Prof. DR.*, *Wafaa A.El-sayed*, for her suggestion and valuable supervision and sincere assistance and effort

I would like to thank *all my colleges* in the Home Economic department for their sincere help and support.

Finally, I would like to dedicate this work to My Father, My Mother, My Sisters and My Brothers

The Plan work

The following chart shows the steps of this thesis:

i- Defining the problem

- H_0 Clothing that intended for protection doesn't achieve the sufficient protection, performance and the required comfort.
- H₁- Composite protective fabric (two and /or three plies), might achieve the required comfort against the bad weathering hazardous.

ii- Solving the problem

To solve the previous problem we made the following plan:

- **1-** Constructing (two, and /or three plies), fabric to test its ability to be used.
- **2-** Using different weaving construction fabric in making the previous fabric.
- **3-** Making experimental testing to estimate:
- 1- The clothing comfort level,
- 2- The Fabric Sewability index, and
- 3- The Fabric Performance index.
- **4-** We can expect from this plan a distinguish improvement in the performance, sewability, and comfort properties.

5-The result of the testing was evaluated by the expectation in (4) by using the Hypothesis testing.

6-According to the result of the evaluation of the Hypothesis testing we can judge on the proposed plan if it work or not, and as in the above chart that if the zero assumption," H_0 ", that would mean the agreement of the expectation with the result, and the working of the plan, and in the rejecting the zero assumption and accepting the alternative assumption H_1 , i.e.:

$$H_1: Y_{1\neq} Y_2$$

And that would mean the suggested plan isn't suitable and we should change it.

Tables of contents

Page no	
Cover	j
Acknowledgment	i
Abstract	ii
The plan of work	i
Contents	•
Chapter, '1'.	1
Section,'1'.	1
1- Introduction:	1
1-1 Types of Waterproof Breathable Fabrics .	5
1.1.1 Densely Woven Fabrics.	5
1.1.2 Membrane.	6
1.1.2.1 Methods of Incorporating Membranes.	6

1.1.2.1.1 Laminated of Membrane and Outer Fabric.	6
1.1.2.1.2 Linear or Insert Processing.	7
1.1.2.1.3 Laminate of Membrane and lining Fabrics.	7
1.1.2.1.4 Laminate of Outer Fabric, Membrane and Lining.	7
1.2 Coatings:	8
1.2.1 Methods of Applying Coatings.	8
1.2.2 Clothing Interacts With the Environment the Following Way.	9
1.2.2.1 Impermeable Coatings.	10
1.3 Technology of Waterproof Breathable Fabrics.	10
1.3.1 Parameters Required.	10
1.3.2 Clothing Ensembles:	10
1.4 Wetting Behavior of Protective Clothing.	11
Section, '2'.	13
2 Protective Fabrics:	13
2.1 Protective Fabric Classification.	14
2.1.1 Materials and Technologies.	16
Section, '3'. Fabric.	16
3.1. Non-woven fabrics.	17
3.2. Composite Textile Materials.	17
3.3. Laminated and Coated Fabrics.	19
3.4. Textile-Reinforced Composite Materials.	19
Section, '4'. Finishing:	19
Section, '5'. Sewing of protective fabric.	20
5.1. Sewing or Assembling.	20
5.2. Future of Personal Protection.	20
5.2.1 Nanotechnology.	20
5.2.2Biotechnology.	21
5.2.3Electronic Technology.	21
5.2.4 Fashion and Function Factors Affecting the Design and use of	
Protective Clothing.	21
5.2.4.1 Factors Influencing the Design Development Process.	22

5.2.4.2 Steps in the Selection of Protective Clothing Materials.	22
5.2.5 Fibers and Fabrics for Protective Textiles.	23
5.2.5.1 Units for fineness and mechanical properties.	25
5.2.5.2 Cellulose, protein and synthetic `textile' fibers.	25
5.2.5.3 Para-aramid (Kevlar and Twaron).	26
5.2.5.4 Meta-Aramid (Nomex).	26
5.2.5.5 Glass fibers.	26
5.2.5.6 Thermally resistant fibers.	26
5.2. 5.7 Fiber fineness.	27
Section, '6' Technical Textiles.	27
6.1. Nonwoven textiles.	28
6.2. 3D woven structures.	28
6.3 Sewing and seams.	28
6.4 Types of hazards.	28
6.4.1 Environmental hazards.	29
6.4.2 The cold environment.	29
6.4.3 Natural and synthetic fibers.	30
6.4.4 Standards.	30
Chapter, '2'. Theoretical Part.	
Building the Six Sigma Infrastructure.	33
1 The Term Six Sigma.	33
2 Frequently Asked Questions about Six Sigma	33
2.1 What is Six Sigma?	33
2.2 Is Six Sigma all about Statistics?	33
2.3 Can Any Project be a Six Sigma project?	33
2.4 What is DMAIC (Define, Measure, Analyze, Improve and	
Control)?	33
2.5 What is DFSS (Design for Six Sigma)?	34
2.6 What is Lean (Discover and Eliminate Unnecessary Steps Within	34
a process 2.7 Is Six Sigma the Same as Project Management Methodology?	34
2.8 Where Should I Look for Six Sigma Project Opportunities?	34
2.0 Where Should I Look for Six Sigma Project Opportunities?	34

2.9 What is the Difference Between Six Sigma and Total Quality	
Management (TQM)?	34
2.10 Why Should I Learn Six Sigma When I Already Know TQM?	35
2.11 Building the Six Sigma Infrastructure.	37
2.11.1 Timetable	37
2.12 Selecting and Tracking Six Sigma Projects.	38
2.13 A system for assessing Six Sigma projects.	38
2.14 Using Pareto Analysis to Identify Six sigma Project Candidates.	39
2.15 Prioritizing Projects With the Pareto Priority Index.	39
2.16 Tracking Six Sigma Project Results.	40
Chapter, '3'. Sewability of Outdoor Fabrics:	41
1 Technical Outdoor Fabrics	41
2 The Sewing Machine	42
3 Sewing Hints and Tips	42
4 Threads and Needles	42
5 Seams and Seam Sealing	43
6 Seams Types	44
Section, 1.7. Sewing Waterproof Breathable Fabrics	45
8. Sewing Fleece Fabrics	45
Chapter, '4'. Experimental Work:	47
Section 1. Testing	47
Section 2 Designing Protective Fabrics:-	47
Section 2 Designing 1 Totective Fabrics	47
Section 3 Assessment techniques	47
3.1 Resistance to penetration and absorption of liquid water.	47
3.1.1Bundesmann Rain Test	48
3.1.2 Penetrating Pressure Test	48
3.2 Measurement of Wind Resistance	49
3.3 Measurement of Water Vapor Permeability	49
3.3.1 ASTM Method	50
3.3.2 Water vapor transmission:	

3.4 Assessment of Seam Appearance	51
3.5 Measurements of Clothing Performance	52
3.5.1 Performance of Clothing for Foul Protection	52
3.5.1.1 Standard Values for Clothing Insulation	52
Section 4 Waterproof Breathable Fabric Comfort.	53
Section 5. Evaluation Assessment Technique.	56
5.1. Parameter Required.	57
Section 6 Clothing Ensembles.	58
6.1. Protection versus comfort.	5 0
Section 7. The effect of the windy conditions	58
Section 7. The effect of the windy conditions.	63
Section 8. Effect of Rainy and Windy Conditions.	64
Section 9. The demand Trilogy.	65
Section 1101 Duotective Echnic Comfort Subjective Evaluation	
Section, '10'. Protective Fabric Comfort – Subjective Evaluation.	67
Section, '11'. 11 1 The Suggested Febria were Subjected to the Following Tests	70
11.1. The Suggested Fabric were Subjected to the Following Tests. 11.2 Properties of Tested Protective Fabric against Foul.	70
11.2 I Toperties of Tested I Totective Pablic against Foul.	71
11.2.1 Foul Weathering Protective Performance:	71
11.3 The Following Questionnaire For the Models Evaluation to	/ 1
Choose Six:	72
11.3.1 Models For the Application in Protective Waterproof	
Breathable Fabrics.	72
11.4. Compression properties.	84
Section,'3'. QFD Quality Function Deployment.	87
11.4.1 QFD Quality Functional Deployment Matrix.	88
11.4.2 Traditional House of Quality.	89
11.4.3 Special Problems.	90
11.4.4.Breathable waterproof fabrics.	90
Chapter 5: Result and discussion.	92
1. Results of Composite Fabrics.	92

2. Results of Water Vapor Transmission:	95
3. Results of Subjective Evaluation of Tested Models.	98
4 Result of House of Quality.	111
5. Results of Economical study:	113
6-Suggested Patterns.	114
7. Conclusion.	128
8. Future work.	131
References:	133

List of figures

Figures	Page no
Fig (1-1) Schematic diagram of a typical membrane system	6
Fig (1-2) Methods of incorporating membranes	7
Fig (1-3) schematic diagram of micro porous coatings	8
Fig (1-4) diagram of Bundesmann apparatus	11
Fig (1-5) diagram of ATTCC rain test apparatus	10
Fig (1-6) typical air permeability apparatus	11
Fig (1-7) ASTM method	12
Fig (1-8) suggest three-layer ensembles	11
Fig (1-9) Schematic classification of protective textiles	23
Fig (1-10) Waterproof breathable fabric mechanism	24
Fig (1-11) shows the structure of protective clothes against fo	ul
weathering.	25
Fig (1-12) The following Figure provides a model of the	he
selection process	32
Fig (1-13) Six Sigma Infrastructure	41
Fig (1-14) bobbin's tension	47
Fig (2-1) the clothing Ensembles	54
Fig (2-2) shows the concept of waterproof and breathable	
fabrics.	56

Fig.(2-3) shows the classification of water proof breathable	56
Fig. (2-4) Schematic diagram of a micro porous coating	57
Fig.(2-5) Structure of suggested composite fabric.	61
Fig (2-6) model number (1)	63
Fig (2-7) model number (2)	64
Fig (2-8) model number (3)	64
Fig (2-9) model number (4)	65
Fig (2-10) model number (5)	66
Fig (2-11) model number (6)	66
Fig (2-12) model number (7)	67
Fig (2-13) model number (8)	67
Fig (2-14) model number (9)	68
Fig (2-15) model number (10)	68
Fig (2-16) model number (11)	69
Fig (2-17) model number (12)	69
Fig (2-18) Quality Functional Deployment Matrix	72
Fig(3-1) Shows integrated summation of composite fabric	
performance (normalized values)	81
Fig (3-2) the effect of the windy conditions	82
Fig (3-3) The effect of the windy conditions	83
Fig. (3-4) Schematic Representation of the wet cup test	84
Fig. (3-5) shows the factors determing customer manufacturer	
demand in a competitive market	84
Fig (3-6) water vapour transmission on fan speed is off	86
Fig (3-7) water vapour transmission on fan speed is (1)	87
Fig (3-8) water vapour transmission on fan speed is (3)	88
Fig (3-9) Evaluation of first model	89
Fig (3-10) Evaluation of second model	90
Fig (3-11) Evaluation of third model	91
Fig (3-12) Evaluation of forth model	92
Fig (3-13) Evaluation of fifth model	93
Fig (3-14) Evaluation of sixth model	94
Fig (3-15) Evaluation of seventh model	95
Fig (3-16) Evaluation of eighth model	96
Fig (3-17) Evaluation of ninth model	97
Fig (3-18) Evaluation of tenth model	98

Fig (3-19) Evaluation of eleventh model	99
Fig (3-20) Evaluation of twelfth model	100
Fig (3-21) Total models Evaluation	101
Fig. (3-22) Kano House Keeping Model	102
Fig (3-23) Quality function deployment	103

The Equations

1- The temperature differences between the exterior of the clothing and the skin (T_{ext} - T_i) divided by the temperature change of the exterior surface (T_{ext} - T_i) as shown below:

$$E = (T_{ext} - T_{skin}) / (T_{ext} - T_{i})$$
 (24)

2- Pareto priority index

$$PPI = \frac{\text{Savings} \times \text{probability of success}}{\text{Cost} \times \text{time to completion (years)}}$$
(39)

3- For the median calculation

$$X = 3.5 - Fi - 0.5$$
 (69)

4. The water permeability index

Multiple layer % MVP =
$$\frac{\text{T-shirt \% MVP}}{100} \times \frac{\text{fleece \% MVP}}{100}$$

 $\times \frac{\text{lining \% MVP}}{100} \times \text{outer fabric \% MVP}$

(86)

5- water vapour permeability

(+) ive relative correlation = $\mathbf{\delta}_{\mathbf{I}} / \mathbf{\delta}_{\mathbf{max}}$

(-) ive relative correlation = $\mathbf{\delta}_{\min}/\mathbf{\delta}\mathbf{i}$

(92)

6. composite fabric comfort modulus can calculated as follows:

"CFCM"=
$$(A_i/A_{max})$$
. 10^2

7- Value is calculated by the following equation:-

(110)

8- Marking efficiency

Pattern Area

Z %=_____Fabric Area

List of tables

Tables

Tables	page no
Table (1-1) heat energy produced by various activities and correspondi	C
perspiration rates	2
Table (1-2) Aramid types and properties	26
Table (1-3) six sigma's timetable	37
Table (1-4) Illustration of the Pareto Priority Index (PPI).	40
Table(1-5) seams types	44
Table (2-1) Tested Composite fabrics composition	71
Table (3-1) The main characteristics of tested Composite fabrics comp Table (3-2)Tested fabric properties (normalized values according to	osition 92
performance diagram method- rader chart)	93
Table (3-3) Fabric performance Sewability comfort characterization	93
of Physical tests related to composite fabric comfort Table (3-2) Result	lts 79