MANAGEMENT OF ROOT ROT DISEASE IN ORNAMENTAL NURSERIES

By

KIROLOS MAGDY ADOLF SAIED

B.Sc.Agric.Sc.(Plant Pathology), Ain Shams Univ. (2009)

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

MASTER IN AGRICULTURE SCIENCES

(Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Shams University

2016

Approval Sheet

MANAGEMENT OF ROOT ROT DISEASE IN ORNAMENTAL NURSERIES

By

KIROLOS MAGDY ADOLF SAIED

B.Sc.Agric.Sc. (Plant Pathology), Ain Shams Univ. (2009)

This thesis for M.Sc .degree has been approved by:
Dr. Mohamed Yasser Hassan Abdalla Prof. Emeritus of Plant Pathology, Faculty of Environmental Agricultural Sciences, Arish University.
Dr. Mohamed Nagy Shattla Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University.
Dr. Medhat Kamel Ali Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University.
Dr. Ahmed Ahmed Mosa Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University.

Date of Exmination: 27/11/2016

MANAGEMENT OF ROOT ROT DISEASE IN ORNAMENTAL NURSERIES

By

KIROLOS MAGDY ADOLF SAIED

B.Sc.Agric.Sc. (Plant Pathology), Ain Shams Univ. (2009)

Under the supervision of:

Dr. Ahmed Ahmed Mosa

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Medhat Kamel Ali

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Kirolos Magdy Adolf Saied: Management of Root Rot Disease in Ornamental Nurseries. Unpublished M.Sc. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2016.

Root rot disease affects a wide range of ornamentals in home and commercial landscapes, nurseries, and greenhouses. The present study identified major fungal pathogens causing root rot disease in six ornamental plants, i.e. Carnation, Geranium, Hollyhock, Hopbush, Orange Jessamine, and Pothos, collected from nurseries in five different locations in Egypt during 2012-2013. The most frequently isolated fungi were identified as Fusarium spp. (94%). These include: F. semitectum, F. solani, F. equiseti, F. chlamydosporum, F. subglutinans, F. scirpi, F. oxysporum, F. anthophilum, F. verticiloides and F. proliferatum. In addition, three isolates of *Phytophthora* spp. and an isolate of *Pythium ultiumum* were also isolated. Variation in pathogenicity of these isolates on Geranium and African marigold plants were established. *In vitro* assays, 16 bacterial and fungal isolates, have shown antagonistic activity against five tested fungal pathogens isolates. The most antagonistic were Pseudomonas fluorescens (strain3339) and Trichoderma harzianum (TCNu 1) which greatly reduced pathogens mycelial growth. In greenhouse experiments with Geranium and marigold, P. fluorescens (strain3339) was superior to T. harzianum (TCNu 1) in reducing root rot severity and improving plant growth characters. Solarization of pathogen-infested potting soil and the addition of bio-agent or organic amendments had positive effects on plant growth of marigold plants and significantly suppressed root rot severity. Growth and infection of marigold plants by root rot disease. No significant effect of soil solarization on total chlorophyll content of marigold plants. However, plants grown in soil amended with garlic powder or compost showed high chlorophyll content. Activity of polyphenol oxidase enzyme of marigold plants were high in plants grown in un-solarized soil, while there was no

ABSTRACT

significant effect between treatments or solarization on activity of peroxidase enzyme. In conclusion, solarization of potting soil for 8-10 weeks, during summer in Egypt, in plastic bag, has prove high potential to be considered as a useful soil disinfectant, and is an inexpensive, fast, and effective technique for recycling pathogen infested soil. Combining solarization with either bioagents or compost or vermicompost for ornamental nurseries and greenhouses production will have higher horticultural value besides being an environmentally safe and an inexpensive alternative for soil disinfestations.

Keywords:

Ornamentals, Root-rot, *Fusarium* spp., *Phytophthora* sp., *Pythium ultimum*, Pathogenicity, Bio-control, Soil Solarization, Compost, Vermicompost, Soil amendments and Disease management.

ACKNOWLEDGMENT

"I wish to express my deep thanks to **ALLAH** who fulfilled my hopes, offered every possible aid for any one in need to it"

I would like to express my sincere gratitude and deep appreciation to **Dr. Ahmed A. Mosa** and **Dr. Medhat K. Ali,** Emeritus Professors of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University for supervision, of this study and progressive criticism and encouragement.

Particular thanks are extended to **all staff members**, **technicians** and **colleagues** at Department of Plant Pathology, Faculty of Agriculture, Ain Shams University for providing me with much needed assistances for some of work and valuable help.

I would also like to thank **Dr. Nevein A. Shehata**, Agriculture Research Center, Egypt for providing me with a biocontrol agent, *Pseudomonas fluorescens* used through this study.

Finally, I am indebted forever to my lovely Mother, Father and my Wife Somia for their patience, support and continuous encouragement.

CONTENTS

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
REVIEW OF LITERATURE
MATERIALS AND METHODS
1. Source of samples
2. Isolation and identification of the causal pathogens
3. Pathogenicity test
3.1. Preparation of the pathogen inoculums
3.2. Plant inoculation.
3.3. Disease assessment
4. Biological control of root rot
4.1. Source of antagonists
4.1.1. Isolation of Rhizosphere-colonizing bacteria and fungi
4.1.2. Supplied bio-control strain
4.2. Assay of antagonism, in vitro
A- The First Experiment
B- The Second Experiment
4.2.1. Assay of antagonistic fungi
4.2.2. Assay of antagonistic bacteria
4.2.3. Assessment of antagonistic activity
4.3. Preparation of antagonist's inoculums
4.3.1. Fungi
4.3.2. Bacteria.
4.4. Evaluation of antagonists' efficiency, under greenhouse conditions
5. Integration of soil solarization, bio-agents and soil amendments
for controlling root-rot on African marigold
5.1. Soil Processing for solarization
5.2. Effect of solarization on total count of fungi and bacteria
5.3. Application of bio-agent and soil amendments (Greenhouse
Experiment)
5.4. Greenhouse Experiment
5.4.1. Assay of Chlorophyll content
5.4.2. Assay of Peroxidase and Polyphenol Oxidase enzymes
a) Enzyme extraction
b) Assay of Peroxidase (POX) enzyme
c) Assay of Polyphenol Oxidase (PPO) enzyme
6. Media used

7. Buffers and Substrates used	42
8. Statistical analysis	43
RESULTS	44
1. Isolation and identification of pathogens	44
2. Pathogenicity	52
2.1. On Geranium	52
2.2. On Marigold.	53
3. Biological control of root rot.	66
4. Assay of antagonism, <i>in vitro</i>	67
4.1. Assay of <i>Trichoderma harzianum</i> (TCNu 1), in vitro	69
4.2. Assay of Pseudomonas fluorescens (Strain3339), in vitro	70
5. Efficiency of antagonists under greenhouse conditions	72
5.1. On Geranium root-rot.	72
5.2. Effect on geranium growth	72
5.3. On Marigold root-rot.	77
5.4. Effect on marigold growth	81
6. Integration of soil solarization, bio-agents and soil amendments	
for controlling root-rot on African marigold	89
6.1. Effect of soil solarization on microbial count	89
6.2. Disease suppression	90
6.3. Effect of plant growth	93
6.4. Effect on Chlorophyll content.	96
6.5. Peroxidase and Polyphenol Oxidase enzyme activities	97
DISCUSSION	100
SUMMARY	108
REFERENCES	112
ARABIC SUMMARY	1

LIST OF TABLES

No.		Page
1.	The name of fungal isolates, isolate code, hosts, locations, year of isolation	47-49
2.	Pathogenicity of 66 fungal isolates from different ornamental nurseries on Geranium plants, under greenhouse conditions (February-March 2014)	54-57
3.	Pathogenicity of 66 fungal isolates, from different ornamental nurseries, on Marigold plants, under greenhouse conditions (February-March 2014)	60-63
4.	Total count of rhizobacteria and fungi from three different ornamental plants grown in different nurseries, using different agar media	66
5.	Antagonistic effect of selected rhizosphere colonizing bacterial and fungal isolates against growth of different pathogenic fungi isolates under laboratory conditions	67
6.	Antagonistic effect of <i>Trichoderma harzianum</i> (TCNu 1) against mycelia growth of different pathogenic fungi isolates, <i>in vitro</i>	69
7.	Antagonistic effect of <i>Pseudomonas fluorescens</i> (strain3339) against mycelial growth of different pathogenic fungi isolates, <i>in vitro</i>	70
8.	Effect of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain 3339) on incidence and severity of root rot of Geranium transplants, grown in soil infested with different fungal pathogen isolates, under greenhouse conditions (February-March 2015)	73-74
	greemouse conditions (restaury material 2013)	13 17

9.	Effect of <i>Trichoderma harzianum</i> (TCNu1) and <i>Pseudomonas fluorescens</i> (strain3339) on some growth characters of Geranium plants, grown in artificially infested soil, after 60 days from transplanting, under greenhouse conditions (February-March 2015)	78-79
10.	Effect of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) on incidence and severity of root rot of Marigold transplants, grown in soil infested with different fungal pathogen isolates, under greenhouse conditions (February-March 2015)	82-83
11.	Effect of <i>Trichoderma harzianum</i> (TCNu1) and <i>Pseudomonas fluorescens</i> (strain3339) on some growth characters of Marigold plants, grown in artificially infested soil, after 60 days from transplanting, under greenhouse conditions (February-March 2015)	86-87
12.	Effect of solarization on total count of fungi and bacteria in soil	89
13.	Effect of integration of soil solarization, bio-agents and soil amendments on seedling survival (%) and root rot severity of Marigold, 14 days after sowing	91
14.	Effect of integration of soil solarization, bio-agents and soil amendments on some growth characters of Marigold transplants	94
15.	Effect of integration of soil solarization, bio-agents and soil amendments on activity of Peroxidase and Polyphenol Oxidase enzymes (unit/g fw) in Marigold transplants	00
	(7 days after sowing)	98

LIST OF FIGURES

No.		Page
1.	Disease rating scale (0-4) used for assessment of severity root rot of Geranium according to root necrosis ($0 = no$ infection, $1 = 1-33\%$, $2 = 34-66\%$, $3 = 67-99\%$ and $4 = dead plant$) at the end of experiment, 60 days after transplanting.	32
2.	Disease rating scale (0-4) used for assessment of severity root rot of Marigold according to root necrosis ($0 = no$ infection, $1 = 1-33\%$, $2 = 34-66\%$, $3 = 67-99\%$ and $4 = dead plant$) at the end of experiment, 60 days after transplanting.	32
3.	Diseased samples of various ornamental plants collected from different nurseries in Egypt showing root rot and wilt symptoms (August 2012-April, 2013), which (A) Geranium, (B) Hollyhock, (C) Orange Jessamine, (D) Pothos and (E) Hopbush.	46
4.	Frequency of occurrence of fungal isolates obtained from different root-rotted ornamental plants, grown in different nurseries in Egypt during 2012/2013.	50
5.	Frequency of occurrence of fungal isolates obtained from nurseries of ornamental plants grown in different locations in Egypt 2012/2013.	51
6.	Pathogenicity of 66 fungal isolates from different ornamental nurseries on foliage of Geranium plants, after 60 days from transplanting in artificially infested soil, under greenhouse conditions (February-March 2014).	58
7.	Pathogenicity of 66 fungal isolates from different ornamental nurseries on roots of Geranium plants, after 60 days from transplanting in artificially infested soil, under greenhouse conditions (February-March 2014).	59

8.	Pathogenicity of 66 fungal isolates from different ornamental nurseries on foliage of Marigold plants, after 60 days from transplanting in artificially infested soil, under greenhouse conditions (February-March 2014).	64
9.	Pathogenicity of 66 fungal isolates from different ornamental nurseries on roots of Marigold plants, after 60 days from transplanting in artificially infested soil, under greenhouse conditions (February-March 2014).	65
10.	Antagonistic effect of different isolates against growth of five different pathogenic fungi, <i>in vitro</i> .	68
11.	Antagonistic effect of <i>Trichoderma harzianum</i> against growth of different pathogenic fungi isolates, <i>in vitro</i> .	71
12.	Antagonistic effect of <i>Pseudomonas fluorescens</i> against growth of different pathogenic fungi isolates, <i>in vitro</i> .	71
13.	Efficacy of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) in controlling root rot of Geranium plants on foliar disease severity, grown in soil infested with different fungal pathogen isolates, under greenhouse conditions after 60 days.	75
14.	Efficacy of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) in controlling root rot of Geranium plants on root-rot disease severity, grown in soil infested with different fungal pathogen isolates, under greenhouse conditions after 60 days.	75
15.	Efficacy of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) on some growth characters of Geranium plants, grown in artificially infested soil, after 60 days from transplanting, under greenhouse conditions (February-March 2015).	80
16.	Efficacy of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain 3339) on incidence of root rot of Marigold plants on foliar disease severity grown in soil infested with different fungal pathogen isolates, under greenhouse conditions after 60 days.	84

17.	Efficacy of <i>Trichoderma harzianum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) on incidence of root rot and root-rot disease severity of Marigold plants grown in soil infested with different fungal pathogen isolates, under greenhouse conditions after 60 days.	84
18.	Efficacy of <i>Trichoderma harizinum</i> (TCNu 1) and <i>Pseudomonas fluorescens</i> (strain3339) on some growth characters of Marigold plants, grown in artificially infested soil, after 60 days from transplanting, under greenhouse conditions (February-March 2015).	88
19.	Effect of solarization on total count of fungi and bacteria in soil.	89
20.	Effect of integration of soil solarization, bio-agents and soil amendments on seedling survival (%) of Marigold transplants.	92
21.	Effect of integration of soil solarization, bio-agents and soil amendments on root-rot severity of Marigold transplants.	92
22.	Effect of integration of soil solarization, bio-agents and soil amendments on some growth characters of Marigold transplants. A, B, C: 60 days after sowing and D: flowering; 90 days after sowing.	95
23.	Effect of integration of soil solarization, bio-agents and soil amendments on Chlorophyll content of Marigold leaves.	96
24.	Effect of integration of soil solarization, bio-agents and soil amendments on activity of Peroxidase enzyme (unit/g fw) in Marigold transplants (7 days after sowing).	99
25.	Effect of integration of soil solarization, bio-agents and soil amendments on activity of Polyphenol Oxidase	

INTRODUCTION

The production of ornamental plants is a thriving and expanding industry, which is economically important in the United States of America, Canada, South America, Australia, and Europe as well as in many developing countries (Gullino and Garibaldi, 2007). Like developed countries, demand of flowers is now even discernible in developing countries, where the cultivation of different types of flowers hold a promise of increasing economic return (Manzoor, et al., 2001). The ornamental plant industry thrives in Egypt because of the temperate, environment that makes Egypt a compatible location to mass produce numerous plant species. Recently, Egypt has become one of the largest producers of flowers in the Arab region, because of the high demand in internal and external markets (Annon., 2014). The value of medicinal, aromatic and ornamental plant crops are estimated at about 0.7% of the total crop production value (El-Nahrawy, 2011). The cultivated area with ornamental plants in Egypt reached about 3.5 thousand feddans and produces annually around 4000 tons of flowers, as amounted of Egypt's exports for the year 2010 was 600 million Egyptian pounds (Annon., 2010).

Diseases are a major limitation for sustained production of ornamental crops due to demand for unblemished plants and plant organs (Daughtrey and Benson, 2005; Gullino et al., 2012). The ornamental plants in Egypt are liable to attack by a wide variety of plant pathogens (Hilal, et al., 2000; Helmy, et al., 2001; Zaher, et al., 2005 and El-Wakeel, 2010), and are responsible for serious losses. However, root rot and wilt diseases in nurseries and greenhouses are major constrains for ornamental production (Daughtrey and Benson, 2005; Gullino and Garibaldi, 2005; Gullino, et al., 2012; Abd Latif, et al., 2016). Soil-borne diseases include the species Pythium, Phytophthora, Rhizoctonia, Thielaviopsis and Fusarium (Newman, 2008; Armengol, et al., 2005, Gullino and Garibaldi, 2007) which collectively include the majority of the fungi that infect roots and crowns of

plants and most ornamental crops are susceptible to one or more of these causal organisms. Once diseases develop and become established in a crop, more frequent and expensive management actions often are required; in addition, repeated chemical control measures may lead to other problems such as phytotoxicity, outbreaks of secondary diseases, or fungicide resistance (**Dreistadt**, 2001). Most pesticide labels have a list of plants on which the product has been tested and determined safe to treat, as well as plants not tolerant of the product and pesticide performance is sometimes altered by the development of pathogen resistance (**Harmon and Bledsoe**, 2012). Frequent use of pesticides often hardens, marks, or stunts some, if not all, cultivars of a species (**Gullino**, *et al.*, 2015). Also, the heavy use of chemical pesticides often leads to deterioration of the agro ecosystems, in addition to its hazardous to the health of humans and animals (**Pimentel**, 2005).

Propagation of ornamental plant materials is the basis for production of healthy plants to provide consumers with safe and sustainably produced products. Continual introduction of new crops and new production technologies creates new opportunities for pathogens to exploit, such that new disease management tactics must be discovered and old ones rediscovered to achieve optimum health management for ornamentals (Daughtrey and Benson, 2005). However, growing concerns over the protection of the environment is now widespread, especially in the field of agriculture. Consumers are progressively seeking quality produce grown under systems respecting the increasingly restrictive environmental guidelines. In this context, ornamental plant growers should also aspire to achieve a more sustainable production system (Gravel, et al., 2009). These challenges require growers to develop the most efficient production plans possible, incorporating as many tactics as they can to maximize plant health and minimize opportunities for pest and disease outbreaks a concept known as integrated pest management (IPM). Management tactics are outlined under the following key components of an IPM program: prevention, cultural