

شبكة المعلومــات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

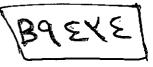
نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



LIGHT - INDUCED REACTIONS ON TiO₂ SURFACES

Thesis Submitted By

HODA MOHAMED REFAAT GALAL

B. Sc. (Chemistry) 1997

To
CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY

For M. Sc. DEGREE IN CHEMISTRY

Thesis Advisors

Prof. Dr. M. S. A. Abdel-Mottaleb Professor of Chemistry, Director of Photoenergy Center

> Dr. G. M. A. Attia Lecturer of Inorganic Chemistry

> Photoenergy Center, Faculty of Science, Ain Shams University 2001

J9£

Approval sheet

Name of candidate: Hoda Mohamed Refaat Mohamed El-Garyb Galal

Degree: M. Sc. in Chemistry

Thesis Title: LIGHT INDUCED REACTIONS ON TiO₂ **SURFACES**

This Thesis has been approved by:

1-Prof. Dr. M. S. A. Abdel Mottaleb

2- Dr. G. M.A. Attia

Prof. Dr. A.-M. Kasaby

Chairman of the Chemistry

Department

LIGHT-INDUCED REACTIONS ON TiO₂ SURFACES

By

Hoda Mohamed Refaat Galal

B. Sc. (Chemistry) 1997

Under the supervision of:

1-Prof. Dr. M. S. A. Abdel Mottaleb Photoenergy Center and Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

2- Dr. G. M. A. Attia Chemistry Department, Faculty of S

Chemistry Department, Faculty of Science Ain Shams University, Abbassia, Cairo, Egypt.

ACKNOWLEDGMENT

I would like to thank Professor M. S. A. Abdel Mottaleb for offering me the opportunity to carry out this interesting research work under his kind supervision and for making use of the excellent facilities of the Photoenergy Center under his guidance. I am also indebted to Prof. Abdel Mottaleb for suggesting the point of research and reading the manuscript critically.

I also give my thanks to Professor G. M. Attia, Lecturer of Inorganic Chemistry, Department of Chemistry, Faculty of Science.

In closing, I wish to express my sincere appreciation to the Photoenergy Center for the offered Higher Studies Grant.

Key words

AOPs Advanced oxidation processes
A Radius of the cavity in which the

fluorophore resides

c Speed of light
CB Conduction band
Donar species

 $egin{array}{lll} \ensuremath{\epsilon} & & & & & & & & \\ E_{
m redox} & & & & & & & \\ E_{
m redox} & & & & & & & \\ E_{
m f} & & & & & & & \\ EV & & & & & & & \\ Electron volt & & & & & \\ \end{array}$

 e_{cb}^{-} Electron in the conduction band

 e_{tr}^{-} Trapped conduction-band electron

 E_{cb} Potential of conduction band E_{vb} Potential of valance band

E_{bd} Potential of band gap of semiconductor

F Faraday constant Radiative decay rate

Fluorescence intensities in absence of

quencher

F Fluorescence intensities in presence

of quencher

Fs Femto second

 ΔG Free energy Difference on the redox

process

h Planck's constant

 h_{vb}^{+} Holes in the valance band ICT Internal charge-transfer

IUPAC International Union of Practical and

Applied Chemistry

K_{nr} Nonradiative decay rate

 K_q Bimolecular quenching constant

 K_{sv} Stern-Volmer constant

 $\begin{array}{ccc} K & & \text{Rate constant} \\ L_D & & \text{Debye length} \\ I_r & & \text{Ohmic drop} \end{array}$

LE Locally excited state

NHE Normal hydrogen electrode

n Refractive indices

ns Nanosecond nm Nanometer

m Meter

m* Electron effective mass

mv Millivolt mol Mole

pH Negative log of hydrogen ion

concentration

pI Isoelectric point

 pK_{a1}^{s} Negative log of the microscopic acidity

constant for the first acid dissociation

 pK_{a2}^{s} Negative log of the microscopic acidity

constant for the second acid dissociation

pH_{zpc} pH of zero point of charge

ps Picosecond

r Distance from center

TICT Twisted internal charge transfer state

T₁ First triplet state

 τ Lifetime $t_{0.5}$ Half lifetime

 τ_0 Lifetime in absence of quencher S_0 Singlet ground electronic state

S₁ First excited singlet electronic state S₂ Second excited singlet electronic state

VB Valance band