

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

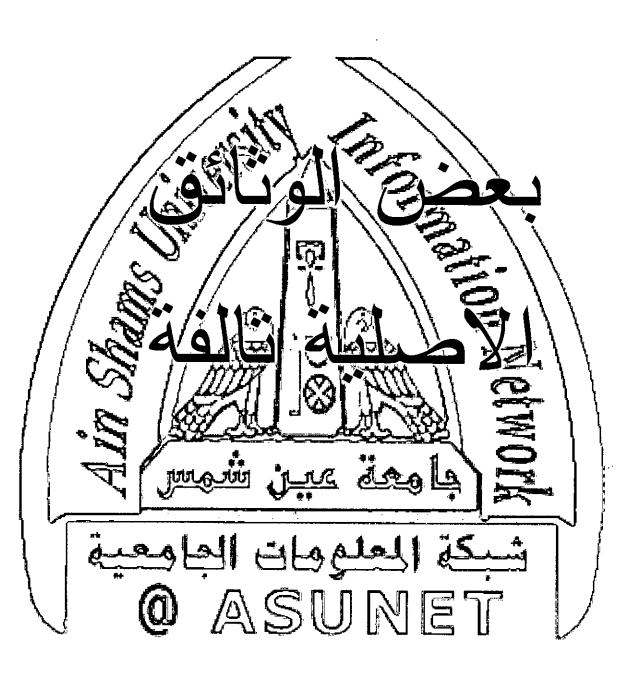
شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات


يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ٤٠-٢٠ مئوية ورطوية نسبية من ٢٥-١٠ هي درجة حرارة من ٢٥-٥٠ مئوية ورطوية نسبية من ٢٥-١٠ ثقي درجة حرارة من ٢٥-٥٠ مئوية ورطوية نسبية من ٢٥-٥٠ مؤوية المناب المناب المنابة المن

THE HEALTH POTENTIAL ROLE OF YOGHURT AND SOY-YOGHURT CONTAINING BIFIDOBACTERIA

By FARAG ALI SALEH IBRAHIM

B.Sc. Agric. (Dairying), Ain Shams Univ.1991.M.Sc. Agric. (Dairying), Cairo Univ. 1997.

THESIS

Submitted for Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

IN

Agricultural Science (Dairy Science and Technology)

TO

Dairy Science and Technology Department
Faculty of Agriculture
Cairo University
2002

3-21-5

بِسمِ اللهِ الرَّحَمٰنِ الرَّحيمِ

رَبِّ أُوزِعنِی آَن أَشْکُرَ نِعْمَتَكَ الَّتِی آَنعُمتَ عَلَی وَعَلَیٰ وَلِدَی الَّتِی آَنعُمتَ عَلَی وَعَلَیٰ وَلِدَی وَالَّتِی آَنعُملَ صَالِحاً تَرضَلْهُ وَأَن أَعْمَلَ صَالِحاً تَرضَلْهُ وَأَدْخِلْنِی بِرَهْتِكَ فی عِبَادِكَ وَادْخِلْنِی بِرَهْتِكَ فی عِبَادِكَ وَادْخِلْنِی بِرَهْتِكَ فی عِبَادِكَ الصَّلْهِ الْصَلْحِینَ الله الصَّلْهِ العَلْمِینَ صَدَقَ الله العَلْمَ الله العَلْمَ عَلِیم.

مِنَ أَلْآيه (١٩) سُورة النَّـــمل

THE HEALTH POTENTIAL ROLE OF YOGHURT AND SOY-YOGHURT CONTAINING BIFIDOBACTERIA

By FARAG ALI SALEH IBRAHIM

B.Sc. Agric. (Dairying), Ain Shams Univ.1991.M.Sc. Agric. (Dairying), Cairo Univ. 1997.

Under the supervision of:

Prof. Dr. IBRAHIM ABD EL SALAM ABD EL GAWAD.

Professor of Dairy Science and Technology.

Faculty of Agriculture, Cairo University.

1998-2000

Dr. ELHAM MUSTAFA EL SAYED.

Assistant Prof. of Dairy Science and Technology. Faculty of Agriculture, Cairo University.

Dr. HODA M. EL ZEINI.

Assistant Prof. of Dairy Science and Technology. Faculty of Agriculture, Cairo University.

Prof. Dr. SAEB ABD EL MONEM HAFEZ

Professor of Special Food & Nutrition.

Food Technology Research Institute, Agricultural Research Center.

APPROVAL SHEET

THE HEALTH POTENTIAL ROLE OF YOGHURT AND SOY-YOGHURT CONTAINING BIFIDOBACTERIA

By FARAG ALI SALEH IBRAHIM

B.Sc. Agric. (Dairying), Ain Shams Univ.1991. M.Sc. Agric. (Dairying), Cairo Univ. 1997.

This thesis for Ph.D. degree has been approved by:

Prof. Dr. LAILA BADAWY ABD EL HAMID.

Professor of Dairy Science and Technology.

Faculty of Agriculture, Ain Shams University.

Prof. Dr. ABD EL GAWAD E. ABOU DAWOOD.

Professor of Dairy Science and Technology.

Faculty of Agriculture, Cairo University.

Dr. ELHAM MUSTAFA EL SAYED.

Assistant Prof. of Dairy Science and Technology.

Faculty of Agriculture, Cairo University.

Committee in Charge

Elham M.

Landa B

Date: 5/11/2002

ACKNOWLEDGEMENT

First and forever, ultimate thanks are due to ALLAH, who without his aid this work could be not done

The author would like to express his most sincere gratitude to **Prof. Dr Ibrahim A. Abd El Gawad** Professor in Dairy Science and Technology Department, Faculty of Agriculture, Cairo University, for his planing and suggesting the problem during the supervising period, and valuable advice during the course of this investigation, unfailing help in writing the manuscript and for his continuos help and guidance in carrying out this work.

The author is also indebted to **Dr. Elham M. El Sayed,** Assistant Prof. in Dairy Science and Technology Department, Faculty of Agriculture, Cairo University for her close supervision, facilities offered and unlimited help through of this investigation as well as writing the manuscript

I am also, thankful to **Dr. Hoda M. El Zeini**, Assistant Prof. in Dairy Science and Technology Department, Faculty of Agriculture, Cairo University for her help and encouragement.

I wish to express my deepest appreciation and sincere gratitude and great help provided for solving the problems and accomplishment of this work, in supervising the research and for continuous help during the experimental part of the thesis to **Prof. Dr. Saeb Abd El Monem Hafez** Professor of Special Food & Nutrition, FTRI, Agricultural Research Center.

I also gratefully acknowledge the help given by **Prof. Dr Ahmed M.**Aboul Enein Professor in Biochemistry Department, Faculty of Agriculture,
Cairo University, for his aid in the antitumor studies in this thesis.

I would like to extend my thanks to my wife for her valuable help through the course of this work.

I would like to thank all members of Special Food & Nutrition, especially Micro Analysis Lab. FTRI, Agricultural Research Center and all staff members of Dairy Science and Technology Department, Faculty of Agriculture, Cairo University, for their help and cooperation.

Degree: Ph.D. Name of Candidate: Farag Ali Saleh_Ibrahim

Title of Thesis: The health potential role of yoghurt and soy-yoghurt containing

bifidobacteria

Supervisors: Dr. Elham Mustafa El Sayed.

Dr. Hoda M. El Zeini.

Prof. Dr. Saeb Abd El Monem Hafez.

Department: Dairy Science and Technology

Dairy Science and Technology Branch:

Approval: / /

ABSTRACT

The potential role of yoghurt and soy-yoghurt containing bifidobacteria was investigated in three parts.

Part (I): The hypocholesterolaemic effect of the probiotic yoghurt and soyyoghurt in rats fed on a cholesterol-enriched diet.

The dietary probiotic yoghurt Bb-12 & Bb-46 and soy-yoghurt Bb-12 increased significantly the body weight gain in contrast with the dietary cholesterol free diet. There were significant differences in the plasma and liver lipids concentration among the two negative (cholesterol-free diet) and positive (cholesterol-enriched diet) control groups. The addition of the probiotic and non-probiotic supplementation to the cholesterol-enriched diet had a markedly affect on the plasma and liver lipid levels. Of the supplementation ingredients, probiotic yoghurt and soy-yoghurt containing Bifidobacterium Bb-12 and Bb-46 were most effective on lowering plasma and liver cholesterol concentration followed by non-probiotic products (plain yoghurt and soymilk). Compared to the cholesterol-enriched diet (positive control), both probiotic yoghurt and soy-yoghurt Bb-12 & Bb-46 resulted in a significantly lower plasma total VLDL+LDL-cholesterol and triglycerides levels as well as liver cholesterol. cholesterol and triglycerides concentrations. Bifidobacterium Bb-46 containing yoghurt and soy-yoghurt were more affective in the lowering of plasma and liver cholesterol levels than that of corresponding containing Bifidobacterium Bb-12. The probiotic yoghurt and soy-yoghurt Bb-12 & Bb-46 remarkably enhanced faecal bile acid excretion. There were an inverse relation between the faecal bile acid excretion and plasma & liver cholesterol levels.

Part II: Antimicrobial activity of probiotic yoghurt and soy-yoghurt against Escherichia coli and Staphylococcus aureus.

There was a sharp decline in bifidobacterial count of all treatments (probiotic yoghurt and soy-yoghurt) during the refrigerated storage period. The number of yoghurt culture in plain and probiotic yoghurt inoculated with or without test organisms decreased gradually in all of these treatments during refrigerated storage period. Probiotic yoghurt containing Bb-12 and Bb-46 exhibited a slight pH drop and slight increase in the titratable acidity compared with plain yoghurt during the refrigerated storage period. In the probiotic soy-yoghurt made with Bb-12 and Bb-46 inoculated with and without test organisms, pH-values were higher than the corresponding values in the plain and probiotic yoghurt containing Bb-12 & Bb-46, over the refrigerated storage period. Probiotic yoghurt containing Bb-12 and Bb-46 inoculated with or without test organisms showed sharper increase in lactic and acetic acids contents than the corresponding values in plain yoghurt direct after the incubation time, and these increasing continued for acetic acid only, during the refrigerated

Cham M

storage period. Direct after incubation time and during the refrigerated storage period, plain yoghurt and probiotic yoghurt containing Bb-12 and Bb-46 inoculated with or without test organisms showed a considerable increase in lactic and acetic acids than the probiotic soy-yoghurt containing Bb-12 and Bb-46 which produces not only lactic and acetic acids but also formic acid. The counts of *E.coli* in all treatments decreased direct after incubation time and during the refrigerated storage period. *E.coli* counts were disappeared in probiotic yoghurt, soy-yoghurt and plain yoghurt after 2, 3 and 5 days of storage, respectively. The counts of *S.aureus* decreased in all treatments direct after the incubation time and during the refrigerated storage periods. The growth of *S.aureus* was not detected in the probiotic yoghurt containing Bb-12 and Bb-46 after the 10th day of storage. Low numbers of *S.aureus* survived in the plain yoghurt and probiotic soy-yoghurt Bb-12 & Bb-46, after 15 days of cold storage.

Part III: Inhibitory effect of probiotic yoghurt and soy-yoghurt on Ehrlich ascites tumor cells.

The effect of probiotic yoghurt and soy-yoghurt containing *Bifidobacterium* Bb-12 & Bb-46 on the inhibition of Ehrlich ascites tumor cells were investigated *in vitro* and *in vivo* studies

1. In vitro studies.

Bifidobacterium Bb-12 and Bb-46 cultivated in MRS broth medium exhibited the highest inhibitory effect on the Ehrlich ascites tumor cells, where % dead tumor cells reached 85.42 & 94.74% and 85.10 & 94.00% after 2 and 24h of incubation time, respectively. In case of supernatant, the corresponding ratios were 77.61 & 83.33% and 71.43 & 88.06%, respectively, while the precipitate fraction of Bifidobacterium Bb-12 and Bb-46 showed the lowest effect, where the corresponding ratios were 4.00 & 16.07% and 9.09 & 11.11%, respectively. The probiotic yoghurt and soy-yoghurt treatments were the highest effective as inhibitory effect on the Ehrlich ascites tumor cells, where % dead tumor cells. The heat-treatment at 85°C was decreased the inhibition effect on the Ehrlich ascites tumor cells of all test treatments compared with before heating.

2. In vivo studies:

Feeding on diet containing tested products resulted in variable differences in body weight and body weight gain compared with control group. The count of feces bifidobacteria were the highest in the group fed on probiotic yoghurt and soy-yoghurt containing Bb-12 and Bb-46. The probiotic soy-yoghurt and yoghurt groups exhibited the highest life span and accordingly the survival rate. Although the increase in life span of all tested groups compared with those of control group, the difference was significantly only in case of mice fed on diet containing probiotic soy-yoghurt Bb-12 and Bb-46, whereas in the other groups was not significantly different from the control.

Elham M.

Contents

INTRODUCTION	1
I REVIEW OF LITERATURES	5
Prohiotics	5
1 1 History and definition	5
1.2. Probiotic microorganisms	6
1.2.1. Bifidobacteria	7
1.2.1.1 General	7
1.2.1.2. Taxonomy and characteristics	7
1.2.1.3. Species	9
1.3. Role of probiotics "bifidobacteria" in health and disease	9
1.3.1.Cholesterol-lowering effect	9
1.3.2. Anti-bacterial effect	13
1.3.3. Anti-tumor effect	15
1.4. Mechanisms of probiotic	19
1.5.Probiotic foods	20
1.6. The health potential role of products containing	
bifidobacteria	21
1.6.1.Yoghurt as probiotic	21
1.6.1.1 Cholesterol-lowering effect	21
1.6.1.2.Anti-bacterial effect	24
1.6.1.2.Anti-bacterial effect	26
1.6.1.3.Anti-tumor effect	29
1.6.2. Soy-yoghurt as probiotic	29
1.6.2.1. Cholesterol-lowering effect	32
1.6.2.2.Anti-tumor effect.	
III MATERIALS AND METHODS	33
1. Materials	-
1.1. Milk	
1.2. Soymilk	33
1.3.1. Yoghurt culture	33
1.3.2. Soy-yoghurt culture	33
Materials of Part (I)	34
1.4.Chemicals	34
Materials of Part II	-ر .
1.5. Tested microorganisms	. 5.
1.5.1.Escherichia coli	٠ .
1.5.2 Stanbylococcus aureus	. J
Materials of Part (III)	. 3
4: 0	

I b Timor cell une	34
1.7. Tumor cells medium and dye	34
2. Methods	35
2.1 Propagation of say milk	35
2.2. Preparation of probiotic soy-yoghurt	35
2.3. Preparation of plain yoghurt and probiotic yoghurt	36
2.4. Microbiological analysis	36
2.4.1. Bifidobacterial count	36
2.4.2. yoghurt culture count	36
Experimental procedures and analytical methods of part (I)	37
2.5. Chemical analysis	37
2.6. Examined products	37
2.7. Animal feeding experiments	37
2.8. Sampling, blood, organs and feces	40
2.8. Sampling, blood, organis and reces	40
2.9.1. Plasma lipid assay	40
2.9.1. Plasma lipid assay 2.9.1.1. Determination of total cholesterol	40
2.9.1.1. Determination of total cholesterol	
2.9.1.2. Determination of high density lipoprotein cholesterol	42
(HDL)	42
2.9.1.3. Determination of triglycerides	44
2.9.1.4. Determination of VLDL+LDL cholesterol	44
2.9.1.5. Atherogenic index	44
2.9.2. Liver assay	44
2.9.2.1. Determination of total cholesterol and triglycerides	44
2.9.3. Determination of bile acids from feces by HPLC	44
2.9.3.1. Extraction of bile acids from feces	45
2.9.3. 2. Chromatographic separation	45 45
Experimental procedures and analytical methods of part II	45
2 10 Titratable acidity	45
2.11. pH-values	46
2.12 <i>F coli</i> count	
2.13. Staphylococcus aureus count	
2.14 Determination of organic acids by HPLC	40
2 14 1 Extraction of organic acids	46
2.14.2 Chromatographic senaration	46
Experimental procedures and analytical methods of part III	. 47
2 15 Bifidobacterial count in mice feces	7/
2 16 In vitro studies	4/
2 16 1 Fyamined samples	4/
2 16.2 Tumor cells count	. 4/
2 17 In vivo studies	40
2 17 1 Everyined samples	. 40
2.17.2. Experimental animals	. 48
mer come and a comment	

ij

	48
2 17 3 Experimental design	51
7 19 Statistical analysis	52
IV RESULTS AND DISCUSSION	- "-
Part (I): The hypocholesterolaemic effect of the probiotic	
yoghurt and soy-yoghurt in rats fed on a	52
chalesteral-enriched diet	
1 The effect of cholesterol-clinicity dict supplements	52
probiotic yoghurt and soy-yoghurt on body weights	
2. The effect of probiotic yoghurt and soy-yoghurt on plasma	54
cholesterol level	54
2.1. Total cholesterol	58
2.2. Plasma HDL-cholesterol	61
2.3. VLDL+LDL-cholesterol	65
2.4. Atherogenic index	03
3. The effect of probiotic yoghurt and soy-yoghurt on plasma	68
triglycereides	00
4. Effect of probiotic yoghurt and soy-yoghurt on liver cholesterol	72
and triglycerides	72
1.4.1. Liver cholesterol	75
1.4.2. Liver triglycendes	
weight	76
1.3. The effect of probiotic yoghurt and soy-yoghurt on the faecal	
hile said gagration	76
Part (II): Antibacterial activity of probiotic yoghurt and	
soy-yoghurt against Escherichia coli and	
Staphylococcus aureus	86
1. Viability of bifidobacteria and yoghurt starter cultures	86
2 mII volves and titratable acidity (TA)	92
3. Lactic, acitic and formic acids contents of probiotic yoghurt and	
and read with test organisms	95
.4. Effect of probiotic yoghurt and soy-yoghurt on the growth and	
assertive rate of E coli	"
5 Effect of probiotic voghurt and soy-yoghurt on the growth and	101
survival rate of Staphylococcus aureus	101