بسم الله الرحمن الرحيم

Radiographic Evaluation of Orodental and Craniofacial Anomalies Associated with Limb Reduction Defects

THESIS

Submitted to the Faculty of Oral and Dental Medicine,
Cairo University,
In Partial Fulfillment of the Requirements of the Degree
of Master in Science
(Oral Radiology Department)

By MennatAllah Ismail Mehrez Riad Bch.D (Cairo University)

Assistant Researcher (Orodental Genetics Department)
National Research Centre

Faculty of Oral and Dental Medicine Cairo University 2010

Supervised By

Assisstant Professor Dr.

Professor Dr.

Sahar H. El Dessouky

Samia A. Temtamy

Ass. Prof. of Oral Radiology

Dep. of Oral Radiology

Faculty of Oral & Dental Medicine

Cairo University

Prof. of Human Genetics

Dep. of Clinical Genetics

National Research Centre

Cairo

CONTENTS

	Page	
Acknowledgement		
List of abbreviations		
List of tables	iv	
List of figures	V	
Chapter 1 Introduction	1 2	
Chapter 2 Review of literature	2	
2-1 Skeletal anatomy of the limbs and patterns of Limb	2	
reduction defects		
2-2 Classification of limb reduction defects	9	
2-3 Genetic background and risk factors of limb reduction		
defects		
2-4 The correlation between oral cavity and limb development		
2-5 Main features in disorders of limb reduction defects		
2-6 Panoramic & cephalometric radiography		
Chapter 3 Aims of the study	89	
Chapter 4 Subjects and methods	90	
Chapter 5 Results and case presentation	103	
Chapter 6 Discussion & Conclusion	131	
Chapter 7 Glossary	142	
Chapter 8 References	147	
Chapter 9 Appendix	166	
Chapter 10 Arabic summary	169	

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to Ass. Prof. Dr. Sahar H. EL Dessouky Assisstant Professor of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, for her patience, help in data collection and kind supervision.

My sincere gratitude and admiration goes to **Prof. Dr. Samia Temtamy** Professor of Human Genetics, National Research Center and the founder of human genetics in Egypt for proposing the point of this thesis and accepting to supervise it. It was an honor working under her clear focus and guidance. I appreciate every single word of advice.

My profound thanks go to **Dr. Tarek ElBadry** Professor of Human Genetics, National Research Center, for his relentless encouragement, data supply and supervision.

I am indebted to Prof. Dr Eman AboulEzz, Prof. Dr Mona Aglan, Prof. Dr Magda Ramzy Professors of Human Genetics, National Research center, for their support.

I also would like to thank **Dr. Mostafa Ibrahim** and **Dr. Mostafa Ahmed**Assistant professors of Human Genetics, National Research Center, for their invaluable counsel.

Last but not least, I would like to extend my thanks to all my professors and colleagues in the Department of Oral Radiology in the Faculty of Oral and Dental Medicine specially **Prof. Dr Hala Zakaría** and my colleagues in the departments of Orodental Genetics and Clinical Genetics in the National Research Centre.

LIST OF ABBREVIATIONS

AER : Apical Ectodermal Ridge

Ag : Antigonion

ANS : Anterior nasal spine

Ar : Articular

BMP : Bone Morphogenic Protein
CBC : Complete Blood Count
CCD : Charged couple device
Ceph : Cepalometric Radiography

Cephs : Cephalograms Cd : Condylon

DR : Duane radial syndrome
Ds : Disorganization syndrome

del : Deletion Eu : Euryon

EUROCAT: European Surveillance of Congenital Anomalies

Fgf : Fibroblast growth factor

FHUF : Femoral hypoplasia with Unusual Facies

Gn : Gnathion Go : Gonion

ICBD : International Clearing House of Birth Defects

ICD : International Classification of Diseases

IW : Interorbital Width

J : Jugale K.V : Kilovolt

Lo : Latero orbitale

LRDs : Limb Reduction Defects

M.A : Milliampere Me : Menton

MMA : Maxillary Mandibular Plane Angle

MMT : Mandibular Maxillary Transverse relation

Mo : Medio orbital MP : Mandibular Plane

N : Nasion

NBDPS : National Birth Defects Research & Prevention Studies

NC : Nasal Cavity NW : Nasal Width

OMIM : Online Mendelian Inhertance in Man

OW : Orbital

PNS : Posterior Nasal Spine

Pog : Pognion PP : Palatal Plane

PSP : Photostimulable phosphor plate

S : Sella

: Sonic hedgehog Shh

: Thrombocytopenia with Absent Radius : Tempromandibular Joint TAR

TMJ : Terminal Transverse Defect TTV

V : Vertex Wt : Weight

: Zone of Polarizing Activity ZPA

LIST OF TABLES

		Page
Table 1	: Chronologic correlation of events in upper limb and head development.	31
Table 2	: Craniofacial & orodental manifestations associated with some limb reduction defect disorders	35
Table 3	: The cephalometric skeletal landmarks used in this study on lateral cephalograms	97
Table 4	: The cephalometric skeletal landmarks used in this study on the postero-anterior cephalograms	98
Table 5	: Linear measurements used on the lateral cephalograms	98
Table 6	: Angular measurements used on the lateral cephalograms	99
Table 7	: Linear measurements from poster-anterior cephalograms	101
Table 8	: Case no.1 Isolated terminal transverse defect	107
Table 9	: Case no.2 Hypoplasia of long bones "Radioulnar defect"	109
Table 10	: Case no.3 Syndrome of hypoplasia of long bones "Bilateral femoral hypoplasia"	111
Table 11	: Case no.4 Radial defect as part of a syndrome "Duane- Radial Ray defect"	114
Table 12	: Case no.5 Isolated terminal transverse defect	117
Table 13	: Case no.6 Radial defect as part of a syndrome "Roberts syndrome"	120
Table 14	: Summary of orodental abnormalities	124
Table 15	: Lateral cephalometric linear measurements' findings	125
Table 16	: Lateral cephalometric angular measurements' findings	126
Table 17	: Postero-anterior cephalometric linear measurements' findings	127
Table 18	: Findings in terminal transverse defects cases	128
Table 19	: Findings in radial defects cases	129
Table 20	: Findings in the hypoplasia of long bones cases	130
Table 21	: Websites	164

LIST OF FIGURES

		Page
Fig. 1	: The human skeleton	4
Fig. 2	: Hand bones	5
Fig. 3	: Foot bones	6
Fig. 4	: Patterns of limb reduction defects	8
Fig. 5	: EUROCAT LRDs classification 2003-2004	11
Fig. 6	: LRDs classification followed by ICBD	12
Fig. 7	: LRDs in the ICD- the tenth revision	13
Fig. 8	: Temtamy & Mckusick LRDs classification	15
Fig. 9	: DNA coiling	18
Fig. 10	: Karyogram	19
Fig. 11	: Chromosome deletion	21
Fig. 12	: Ring chromosome	21
Fig. 13	: Chromosome inversion	22
Fig. 14	: Chromosome translocation	23
Fig. 15	: Chromosome duplication	23
Fig. 16	: Pedigree symbols	25
Fig. 17, 18, 19	: Single gene inheritence	27
Fig. 20	: Stages of tooth development	33
Fig. 21	: Developmental genes, Fgf, BMP found in the	33
	enamel knot of the tooth and AER & ZPA of the	
	limb	
Fig. 22	: Acheiropody	62
Fig. 23	: Cornelia de Lange	63
Fig. 24	: 6q Deletion with split hand and foot	64
Fig. 25	: Baller-Gerold syndrome	65
Fig. 26	: E-trisomy	66
Fig. 27	: Femoral hypoplasia and unusual facies	67

Fig. 28	: Hemifacial microsomia and radial defects	68
Fig. 29	: Nievergelt syndrome	69
Fig. 30	: Duane radial ray syndrome	70
Fig. 31	: Roberts syndrome	71
Fig. 32	: Panoramic radiograph presents both sides of	73
	the face as well as a frontal prespective	
Fig. 33	: Panoramic images are flattened out schemes of	73
	a curved image plane.	
Fig. 34	: Principal of panoramic radiography	76
Fig. 35	: The height and shape of the beam	77
Fig. 36	: The original cephalostat	80
Fig. 37	: Patient positioning in lateral cephalometry	81
Fig. 38	: Lateral cephalometric landmarks	83
Fig. 39	: Posteroanterior cephalometric landmarks	86
Fig. 40	: Ricketts' posteroanterior measurements	88
Fig. 41	: Technique for lateral radiographic	94
	cephalometry	
Fig. 42	: Lateral cephalometric landmarks and	100
	measurements used in this study	
Fig. 43	: Postero-anterior cephalometric landmarks and	43
	measurements used in this study	
Fig. 44	: Pedigree chart of case no.1	104
Fig. 45	: Pedigree chart of case no.2	104
Fig. 46	: Pedigree chart of case no.3	104
Fig. 47	: Pedigree chart of case no.4	105
Fig. 48	: Pedigree chart of case no.5	106
Fig. 49	: Pedigree chart of case no.6	106
Fig. 50	: Case no.1	108
Fig. 51(a,b,c)	: Case no.2	110
Fig. 52(a,b,c,d)	: Case no.3	112

Fig. 53	: Case no.4	115
(a,b,c,d,e,f,g,h)		
Fig. 54	: Case no.5	118
(a,b,c,d,e)		
Fig. 55(a,d,c,d)	: Case no.6	121

1-Introduction

Limb reduction defects (LRDs) which are also known as limb deficiencies or absence deformities are defined as absence or severe hypoplasia of the skeletal structures of the limb (Temtamy and McKusick, 1978). LRDs are one of many congenital limb malformations but they have a higher profile among the public. In the 1960's the drug Thalidomide which was prescribed then as an antiemetic drug during pregnancy caused a large number of LRDs cases which McCredie (2009) refere to as the "thalidomide catastrophe". Again in the early 1990s the prenatal test chorionic villus sampling done in the early weeks of pregnancy was blamed for causing LRDs (Evans and Wapner, 2005).

LRDs are also common; they have an estimated prevalence rate that ranges from 1 in 500 to 1 in 1000 human live births (Wilkie, 2003). Two thirds of LRDs are considered disabling (Vuylsteek and Hallen, 1994).

Craniofacial and orodental abnormalities are included in the diagnostic criteria of some LRDs and with the expanding contribution of radiology in diagnosis, a look at the craniofacial and orodental roentogenic manifestations were due necessary to help extend LRDs' comprehensive examination and cover previously uninvestigated aspects of this developemental disabling chronic problem.

2- Review of Literature

2-1. Skeletal anatomy of the limbs and patterns of limb reduction defects

<u>Skeletal anatomy of the limbs</u> (Gray, 2000; Hartwig, 2008; Tank, 2009)

The upper limb consists of four parts (Fig. 1): the shoulder, the arm, the forearm and the hand. The scapula forms the shoulder. It communicates also with the clavicle anteriorly.

The arm consists of a single long bone called the **humerus** which is the largest bone of the upper limb. It consists of a body and two extremities. The upper extremity consists of a head, a neck and two tubercles. The head is a smooth hemisphere that articulates with the glenoid fossa of the scapula to form the shoulder joint. The lower extremity of the humerus has two articular surfaces. On assuming the anatomical position (i.e. palm facing upwards) it articulates with **the radius laterally and with the ulna medially**.

The **ulna** and the **radius** (Fig.1) constitute the forearm. The ulna appears longer yet weaker than the radius. Its upper extremity is larger than the lower. It is firmly attached to the humerus to form the elbow joint. The radius's lower extremity is more prominent than the upper as it contributes to the movement of the wrist and hand.

The **hand** (Fig.2) consists of three parts; the wrist (the carpus), the palm (the metacarpus) and the fingers. They constitute 27 bones. The **carpus** consists of eight small bones arranged in two rows, four bones each. The **metacarpus** is formed of five metacarpal bones numbered from I to V. The metacarpal bases articulate with the wrist bones, while

the heads articulate with the fingers and form the knuckles that appear when the fist is clenched. The fingers consist of 14 phalanges.

The **phalanges** are arranged in three rows per finger except the thumb. The first row (metacarpal related) is termed the proximal row, next is the middle and finally the distal row. The digits have terms (thumb, index, middle, ring, little) but are also numbered from I to V starting from the thumb.

The lower limb (Fig.1) consists of four parts: the hip, the thigh, the leg and the foot. The thigh consists of a single large bone called the **femur** which is the longest, strongest and largest bone of the whole body. It is made up of a body and two extremities. The head communicates with the pelvis to form the hip joint. The lower extremity is larger than the upper as it will form the knee joint. The patella is a large triangular bone which is responsible for knee joint protection.

The leg consists of the **tibia** and the **fibula** (Fig.1). **The tibia is present medially**. It is the second longest bone of the body. **The fibula is found laterally**. It is the slenderest of all long bones. It is connected to the tibia from both its ends. It doesn't participate in the knee joint but forms the lateral part of the ankle (tarsus). The **foot** (Fig.3) consists of the tarsi which are of seven bones not eight. Starting medially the metatarsals are numbered I to V and the 14 phalanges are arranged in three rows; the proximal, middle and distal with the exception of the big toe (hallus) which is made up of only two rows.

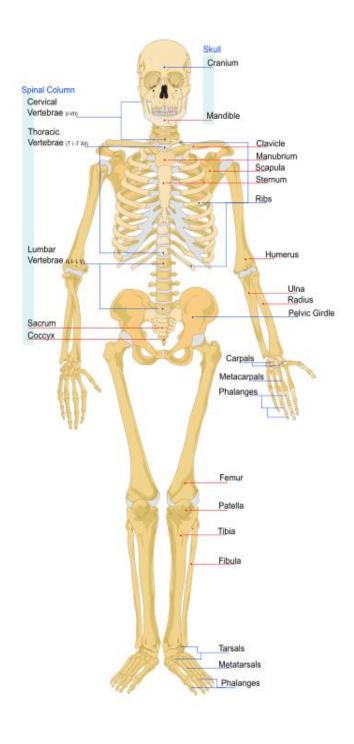


Fig.1 The human skeleton wiki.chainofthoughts.com/dt/en/Human%20skeleton