

Molecular characterization of the protective mechanism of coumarin derivatives against oxidative stress in rat liver

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Biochemistry

By

Abeer Ibraheem Mogadem

(B.Sc. in Biochemistry-King Abdel-Aziz University, 2002)

Under Supervision of

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Nahla Samir Hassan

Lecturer of Biochemistry Faculty of Science Ain Shams University

Dr. Manal Asem Emam

Lecturer of Biochemistry Faculty of Science Ain Shams University

2013

التوصيف الجزيئي للآلية الوقائية لهشتقات الكومارين ضد جهد التأكسد في كبد الجرذان

رسالة مقدمه كجزء متمم لمتطلبات الحصول على درجة الماجستير في الكيمياء الحيوية

مقدمة من الطالبة

عبير إبراهيم مقدم

بكالوريوس العلوم في الكيمياء الحيوية-2002 (جامعة الملك عبد العزيز)

تحت إشراف

أ.د. محمد رجاء محمد

أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس

د. منال عاصم إمام مدرس الكيمياء الحيوية كلية العلوم جامعة عين شمس

د. نهله سمير حسن مدرس الكيمياء الحيوية كلية العلوم جامعة عين شمس

2013

ACKNOWLEDGEMENT

First, last and forever my greatest appreciation goes to Almighty ALLAH who strengthened me during the course of this work and who is the source of my life and inspiration.

I would like to express my sincere appreciation and gratitude to my supervisor, Dr. **Mohamed Ragaa Mohamed**, professor of biochemistry and molecular biology, Department of Biochemistry, Faculty of Science, Ain Shams University, whose expertise, understanding and patience added considerably to my graduate experience. I appreciate his vast knowledge and skills in many areas (e.g., politics, ethics and interaction with participants), and his assistance in writing all my reports. It has been a great pleasure to work under his supervision. His support and encouragement are highly appreciated.

I would also like to offer my deep thanks and grateful acknowledgement to Dr. **Nahla Samir Hassan**, lecturer of biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for her kindness, assistance, great effort and close supervision.

I also want to express my deepest thanks and sincere gratitude to Dr. **Manal Asem Emam,** lecturer of biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for her devoted and valuable supervision, continuous

guidance, sympathetic help, and encouragement throughout the course of this study.

Special thanks are due to Dr. **Shadia Abdel-Hamid Fathi**, professor of biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for her help in getting this scholarship opportunity at Ain Shams University and her assistance in many aspects that cannot be mentioned for limiting space.

My thanks also go out to those who provided me with valuable help at times of critical need; my colleagues during the pre-master. Thanks are also due to members of the Department of Biochemistry for their help.

Finally, this study wouldn't have been possible without the help, support and financial assistance of my beloved country; kingdom of Saudi Arabia.

ABSTRACT

Abeer Ibraheem Mogadem. Molecular characterization of the protective mechanism of coumarin derivatives against oxidative stress in rat liver. Department of Biochemistry, Faculty of Science, Ain Shams University.

Natural products, for a long time, have been recognized as an invaluable source for the most active components of medicines for preventing and treating many diseases including liver diseases. In recent years, herbal medicines derived from plant extracts have become a subject of interest because of their beneficial effects on human health. Among various phytochemicals, polyphenols have attracted much attention because of their broad range of biological activities related to medicinal uses. One such phytochemical is coumarin (1,2-benzopyrone), a phenolic compound derived from Cinnamon bark. The phenolic nature of the compound itself proves it to be a potent antioxidant. The present study aims to investigate the protective effects of two coumarin derivatives, umbelliferone against carbon tetrachloride (CCl₄)-induced daphnetin, oxidative stress and liver damage in rats and elucidate the underlying mechanism. For control purposes, a side-by-side comparison with hesperidin, an antioxidant flavonoid known for its protective effect against CCl₄-induced hepatocyte injury, was done. Treatment of male Swiss albino rats with umbelliferone, daphnetin or hesperidin, along with CCl₄, significantly improved the CCl₄-

induced elevations in liver enzyme activities as well as lipid profile and kidney function parameters. In addition, the two compounds alleviated the increased level of lipid peroxidation and increased the level of total antioxidant activity. On the other hand, the investigated compounds were able to prevent the CCl₄-induced histopathological alterations of the liver tissues.

The molecular mechanism underlying the protective effect of these compounds was then investigated using western blot analysis, real-time quantitative PCR and enzyme activity assay. Similar to hesperidin, both umbelliferone and daphnetin, induced the nuclear translocation and activation of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective heme oxygenase-1 (HO-1). These results suggest that umbelliferone and daphnetin have good potential as therapeutic agents via their ability to attenuate oxidative stress by activating Nrf2-mediated HO-1 induction.

Key words: Coumarin, umbelliferone, daphnetin, carbon tetrachloride, antioxidant, heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2).

CONTENTS

1	Page
Abstract	viii
List of abbreviations	X
List of figures	xiv
List of tables	xvii
Aim of the work	xviii
Chapter I: Introduction	1
1.1. Inactivation and detoxification of xenobiotics and	
metabolites in the liver	2
1.1.1. Phase I detoxification	5
Cytochrome P450 and xenobiotic metabolism	5
1.1.2. Phase II detoxification	8
1.1.2.1. Glutathione conjugation	9
1.1.2.2. Amino acid conjugation	11
1.1.2.3. Methylation	11
1.1.2.4. Sulfation	12
1.1.2.5. Acetylation	12
1.1.2.6. Glucuronidation	13
1.2. Oxidative stress and liver disease	14
1.3. Drug-induced hepatotoxicity	15
1.3.1. Mechanisms of drug-induced hepatotoxicity	16
1.3.1.1. Initial mechanisms of toxicity: Direct cell stress,	
direct mitochondrial impairment and specific immune	
reactions	16

i

1.3.1.2. Direct and death receptor-mediated pathways	
leading to mitochondrial permeability transition	18
1.3.1.3. Apoptosis and Necrosis	20
1.4. Role of Carbon tetrachloride in liver diseases	23
1.4.1. Major uses or sources	23
1.4.2. The mechanism of CCl ₄ induced hepatotoxicity	24
1.5. Hepatoprotective natural products	26
1.5.1. Plant phenolic compounds	27
1.5.1.1. Flavonoids	27
1.5.1.1.1 Hesperidin	30
Absorption and metabolism	31
Pharmacological effects of hesperidin	32
Effects on the vascular system	32
Anti-inflammatory effects	33
Antimicrobial activity	34
Antiallergic effects	35
Antiulcer activity	35
Effect on wound healing	35
Antifertility activity	36
1.5.1.2. Coumarins	37
Absorption and Distribution	40
Metabolism	41
Pharmacological effects of coumarins	44
Anti-coagulant activity	44

Anti-inflammatory activity	44
Antibacterial activity	45
Anticancer activity	46
Antitubercular activity	47
Neuroprotective activity	47
Cytochrome P450 inhibiting activity	47
Antihyperglycemic activity	48
Coumarins and antioxidant activity	48
1.5.1.2.1. Umbelliferone	49
1.5.1.2.2. Daphnetin	50
1.6. Protective Mechanism of plant polyphenolic compounds	52
1.7. Scope of the research	57
Chapter II: Materials and Methods	58
2.1. Materials	58
2.1.1. Chemicals	58
2.1.2. Experimental animals	59
2.1.3. Kits	60
2.1.4. Enzymes	61
2.1.5. Supplies	61
2.1.6. Oligonucleotide primers for real-time quantitative	
polymerase chain reaction (qRT-PCR) amplification	62
2.1.7. Reagents and solutions	62
2.1.8. Buffers	66
2.2. Methods	72

72
72
72
73
73
74
74
75
75
76
76
76
77
77
78
79

2.2.3. Assessment of the molecular mechanism underlying	
the protective effects of umbelliferone and daphnetin	80
2.2.3.1. Evaluation of the expression and activity levels	
of HO-1 in liver tissues	80
2.2.3.1.1. Determination of the HO-1 mRNA	
expression level by Real-time quantitative polymerase	
chain reaction (qRT-PCR)	80
2.2.3.1.1.1. Total RNA extraction	80
2.2.3.1.1.1. Lysate preparation	80
2.2.3.1.1.1.2. RNA purification	81
2.2.3.1.1.1.3. RNA formaldehyde/agarose gel	
electrophoresis	81
2.2.3.1.1.1.4. Removal of genomic DNA from	
RNA preparations	82
2.2.3.1.1.2. First strand cDNA synthesis	83
2.2.3.1.1.3. Real-time quantitative polymerase	
chain reaction (qRT-PCR)	84
2.2.3.1.2. Heme oxygenase-1 (HO-1) enzyme activity	
assay	86
2.2.3.2. Assessment of the nuclear translocation of Nrf2	87
2.2.3.2.1. Preparation of cytoplasmic and nuclear	
extracts	87
2.2.3.2.2. Bicinchoninic acid (BCA) protein assay	88
2.2.3.2.3. SDS-polyacrylamide gel electrophoresis	

(SDS-PAGE)	89
2.2.3.2.4. Western blot analysis	91
2.2.4. Statistical analysis	94
Chapter III: Results	95
3.1. Biochemical parameter measurements	98
3.1.1. Liver enzyme activities	98
3.1.2. Lipid profile parameters	100
3.1.3. Kidney function parameters	102
3.1.4. Oxidative stress markers	104
3.1.4.1. Determination of serum malondialdehyde	
(MDA) concentration	104
3.1.4.2. Total antioxidant activity (TAA)	108
3.2. Histopathological examinations	111
3.3. Assessment of the molecular mechanism underlying the	
protective effects of umbelliferone and daphnetin	116
3.3.1. Evaluation of the expression and activity levels of	
HO-1 in liver tissues	116
3.3.1.1. Determination of the HO-1 mRNA expression	
level	116
3.3.1.1.1. Total RNA extraction	116
3.3.1.1.1. RNA purity	117
3.3.1.1.2. RNA concentration	117
3.3.1.1.3. RNA integrity	117
3.3.1.1.2. Real-time quantitative polymerase chain	

reaction (qRT-PCR)	120
3.3.1.2. HO-1 enzyme activity assay	125
3.3.2. Nrf2 nuclear translocation	127
3.3.2.1. Nuclear and cytoplasmic fraction preparations	127
3.3.2.2. SDS-polyacrylamide gel electrophoresis (SDS-	
PAGE)	131
3.3.2.3. Western blot analysis	133
Chapter IV: Discussion	137
Summary	157
References	161
Arabic summary	206

LIST OF ABBREVIATIONS

ADP adenosine diphosphate

ADPS N-ethyl-N-propyl-m-anisidine

Akt serine/threonine kinase (Protein Kinase B; PKB)

ALT alanine transaminase

AMP adenosine monophosphate AMV avian myeloblastosis virus

ANOVA one-way analysis of variance

ALP alkaline phosphatase

ARE antioxidant response element

AST aspartate transaminase ATP adenosine triphosphate

BCA bicinchoninic acid

BSE P bile salt efflux pump

cAMP cyclic adenosine monophosphate

cDNA complementary deoxyribonucleic acid

cGMP cyclic guanosine monophosphate

CNC cytoskeleton binding protein Kelch-like erythroid

CYP cytochrome P

DAPH daphnetin

DEPC diethylpyrocarbonate

DILI drug-induced liver injury

DISC death-inducing signaling complex

DNA deoxyribonucleic acid

dNTP deoxyribonucleotide

DTT dithiothreitol