PROPAGATION OF SOME ORNAMENTAL PLANTS USING TISSUE CULTURE TECHNIQUE

By RAMEZ SABER THABET EISA

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Ornamental Horticulture)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

PROPAGATION OF SOME ORNAMENTAL PLANTS USING TISSUE CULTURE TECHNIQUE

By RAMEZ SABER THABET EISA

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2005

This thesis for M.Sc. degree has been approved by: Dr. Faisal Mohamed Saadawy Head Researcher Emeritus of Ornamental Plants, Horticulture Research Institute, Agricultural Research Center Dr. Hesham Abd El-Raof Said El-Shora Associate Prof. of Ornamental Horticulture, Faculty of Agriculture, Ain Shams University Dr. Sohair El-Sayed Mohamed Hassan Prof. Emeritus of Ornamental Horticulture, Faculty of Agriculture, Ain Shams University

Date of Examination: 22/5/2010

PROPAGATION OF SOME ORNAMENTAL PLANTS USING TISSUE CULTURE TECHNIQUE

By RAMEZ SABER THABET EISA

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2005

Under the supervision of:

Dr. Sohair El-Sayed Mohamed Hassan

Prof. Emeritus of Ornamental Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mahmoud El-Sayed Hashem

Prof. Emeritus of Ornamental Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Salah Abd El-Aziz Gomaa

Head Researcher Emeritus of Ornamental Plants, Horticulture Research Institute, Agricultural Research Center

ACKNOWLEDGEMENTS

All praises are due to God who gave me the support to accomplish this work.

This thesis is dedicated to the late **Prof. Dr. Mahmoud El Sayed Hashem** Professor Emeritus of Ornamental Horticulture, Department of Horticulture, Faculty of Agriculture, Ain shams University for his exerted efforts to achieve this work.

I have the honour to be supervised by **Prof. Dr. Sohair Mohamed El Sayed** Professor Emeritus of Ornamental Horticulture, Department of Horticulture, Faculty of Agriculture, Ain shams University, for the continuous encouragement throughout my study.

Deep thanks to **Prof. Dr. Salah Abd El Aziz Gomaa** Head Researcher Emeritus, Department of Ornamental Plants, Horticulture Research Institute, Agriculture Research Center.

My sincerely appreciation to **Prof. Dr. Faisal Mohamed Saadawy,** Head Researcher Emeritus, Department of Ornamental Plants,
Horticulture Research Institute, Agriculture Research Center, for his great
efforts in writing and reviewing the manuscript.

Many thanks for **Dr. Mamduoh Ebrahim El-Shamy** Principal of El-Zohrya botanical garden Lab. and research garden lab. For tissue cutlture Horticulture Research Institute, Agriculture Research Center.

I am much indebted to Assistant Professor **Mina Samaan Farag** for his helping me to fulfill this work. I am very thankful to my family which helped me faithfully.

Finally, I feel very obliged to the staff of the tissue culture laboratory of El-Zouhriya Botanical Garden for improvement, for their kind help and guidance throughout the course of this study.

ABSTRACT

Ramez Saber Thabet Eisa: Propagation of Some Ornamental Plants Using Tissue Culture Technique. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2010.

Several factors were studied in order to establish an *in vitro* protocol to propagate some rare ornamental plants *Pyracantha fortuneana* (shrubs), *Aegle marmelos* (trees) and *Clerodendrum splendes* (climbers). 0.05% mercuric chloride for 1-3 min was used for each of them initially.

Pyracantha fortuneana explants, treated with 1% sodium hypochlorite for 20 min, achieved the highest survival and lowest contamination percentages. Shoot tips of Pyracantha fortuneana explants, inoculated on the establishment medium gave the highest average shooting percentage, whereas the stem nodes inoculated on the same medium showed the lowest shooting percentage.

In addition, 1% sodium hypochlorite for 25 min achieved the highest average survival percentage for the *Aegle marmelos*, however it did not exceed 11.33%, recording the lowest average contamination percentage.

10% of the survived shoot tips of *Aegle marmelos* explants, inoculated on establishment medium, responded positively, while the stem nodes of the same plant showed good result 80%. Adding activated charcoal to *Aegle* multiplication media was effective in overcoming the problem of leaf drop.

Applying sodium hypochlorite at 0.75% for 25 min achieved the highest survival percentage for the *Clerodendrum splendes* explants. 0.5% of the shoot tips inoculated on establishment medium gave shooting response, while 18% of them formed callus. 2% of stem nodes cultured on the same media showed shooting, and 42% formed callus.

Experiment of garlic extract (G.E) as a disinfectant agent for nutrient medium achieved the best significant effect at the last concentration 60%.

Concentration of 20% G.E achieved the highest significant value of proliferated *Pyracantha fortuneana* shoots.

There were no significant differences among the treatments of G.E. on average number of proliferated shoots, shoot length and leaves number of *Aegle marmelos* microshoots.

Meanwhile, there was no significant effect of garlic extract on *Clerodendrum splendens* microshoots.

Murashige and skoog (MS) medium (at 3/4 strength) was generally successful with all studied species. Adding BAP at 1 or 3 mgl⁻¹ combined with Kin at 0 mgl⁻¹, 3 mgl⁻¹ or 5 mgl⁻¹ to the multiplication media resulted in the highest average number of proliferated shoots during the three first subcultures for the *Pyracanhta fortuneana*.

In case of *Aegle marmelos*, a significant effect was observed for the combination of BAP and Kin on averages of proliferated shoots and leaves number was obtained by applying BAP and Kin at 0.5 mgl⁻¹.

Media free of BAP and Kin, or supplied with Kin at 1 or 3 mgl⁻¹ were the best for *Clerodendrum splendes* shoot proliferation.

IBA at 3 mgl⁻¹ for *Pyracantha fortuneana* microshoots was the best in order to enhance both rooting percentage and the number of roots/shoot.

In the same concern, using 0.5 mgl⁻¹ IBA to the *Aegle* marmelos rooting medium achieved the highest averages of rooting percentage, number of roots and root length.

The produced *Pyracantha fortuneana* plantlets were acclimatized successfully with a survival percentage of 65-70. The same record was obtained in case of *Aegle marmelos* plantlets with 60-65 survival percentage.

Key words: Pyracantha fortuneana, Aegle marmelos,

Clerodendrum splendens, Tissue culture, Microshoots,

Garlic extraction, Multiplication, Rooting,

Acclimatization.

CONTANTS

	Page
LIST OF TABLES	I
LIST OF FIGURES	IV
LIST OF PLATES	IX
ABBREVIATIONS	X
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	11
3. MATERIALS AND METHODS	24
4. RESULTS AND DISCUSSON	28
4.1. Establishment stage	27
4.1.1. Sterilization of explants	27
4.1.1.1. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on survival percentage of <i>Pyracantha</i>	
fortuneana explants	27
4.1.1.2. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on contamination percentage of	
Pyracantha fortuneana explants	28
4.1.1.3. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on death and browning percentage of	
Pyracantha fortuneana explants	31
4.1.1.4. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on survival percentage of Aegle	
marmelos explants	33
4.1.1.5. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on contamination percentage of Aegle	
marmelos explants	35
4.1.1.6. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on browning percentage of Aegle	
marmelos explants	37
4.1.1.7. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on survival percentages of	

Clerodendrum splendens explants	38
4.1.1.8. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on contamination percentages of	
Clerodendrum splendens explants	40
4.1.1.9. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on browning percentages of	
Clerodendrum splendens explants	42
4.1.1.10. Effect of different concentrations of sodium hypochlorite	
(NaOCl) during different periods on callus formation percentages of	
Clerodendrum splendens explants	43
4.1.2.1. Effect of bud type on the percentages of bud swelling, shooting	
and callus formation of <i>Pyracantha fortuneana</i> explants	45
4.1.2.2. Effect of bud type on bud swelling, shooting and callus	
formation on Aegle marmelos explants	46
4.1.2.3. Effect of bud type on bud swelling, shooting and callus	
formation on <i>Clerodendrum splendens</i> shoot tip and stem node explants	
which resulted from surviving explants	47
4.1.3.1. Examination of garlic extract as a disinfectant agent for nutrient	
medium	51
4.1.3.2. Effect of garlic extract at different concentrations without	
autoclaving	51
4.1.3.3. Experimentation of garlic extract as nutrition supplement in	
media	52
4.2.1. Effect of BAP and Kin at different concentrations on average	
number of proliferated <i>Pyracantha fortuneana</i> shoots in the first	
subculture	58
4.2.2. Effect of BAP and Kin at different concentrations on average	
number of proliferated <i>Pyracantha fortuneana</i> shoots in the second	
subculture	59
4.2.3. Effect of BAP and Kin at different concentrations on average	
number of proliferated <i>Pyracantha fortuneana</i> shoots in the third	
subculture	61

4.2.4. Effect of BAP and Kin at different concentrations on average
shoot length (cm) of Pyracantha fortuneana shoots in the first
subculture
4.2.5. Effect of BAP and Kin at different concentrations on average
shoot length (cm) of Pyracantha fortuneana shoots in the second
subculture
4.2.6. Effect of BAP and Kin at different concentrations on average
shoot length (cm) of Pyracantha fortuneana shoots in the third
subculture
4.2.7. Effect of BAP and Kin at different concentrations on average
number of leaves of <i>Pyracantha fortuneana</i> shoots in the first subculture
4.2.8. Effect of BAP and Kin at different concentrations on average
number of leaves of Pyracantha fortuneana shoots in the second
subculture
4.2.9. Effect of BAP and Kin at different concentrations on average
number of leaves of <i>Pyracantha fortuneana</i> shoots in the third subculture
4.2.10. Effect of number of microshoots per jar at 2, 4, 6, 8, 10
microshoots planted together
4.2.11. Effect of adding activated charcoal to medium at 1,
3, 5 and 5 g\l on number of leaves, number of shoots and shoot length of
Aegle marmelos shoots
4.2.12. Effect of BAP &Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl ⁻¹ on average
number of proliferated shoots / microshoot in the first subcultures of
Aegle marmelos shoot
4.2.13. Effect of BAP &Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl ⁻¹ on average
shoot length (cm) in the first, second and third subcultures of Aegle
marmelos shoots

4.2.14. Effect of BAP &Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl⁻¹on average number of leaves/microshoot in the first, second and third subcultures of

Aegle marmelos shoots	94
4.2.15. Effect of BAP and Kin at 0, 1, 3 and 5 mgl⁻¹on average number	
of proliferated Clerodendrum splendens microshoots	103
4.2.16. Effect of BAP and Kin at 0, 1, 3 and 5 mgl ⁻¹ on averages shoot	
length of Clerodendrum splendens microshoots	104
4.2.17. Effect of BAP and Kin at different concentrations on average	
leaves number of Clerodendrum splendens microshoots	106
4.2.18. Effect of BAP and Kin at 0, 1, 3 and 5 mgl ⁻¹ on callus weight of	
Clerodendrum splendens microshoots	107
4.3.1. Effect of adding IBA at 0, 1, 3 and 5 mgl ⁻¹ on rooting media of	
pyracantha fortuneana microshoots	111
4.3.2.1. Effect of IBA on Aegle marmelos shoots	115
4.3.2.2. Effect of adding IBA at 0, 0.5, 5, 10, 15, 20 and 25 mgl ⁻¹ on	
rooting %, number of roots, root length and shoot length of Aegle	
marmelos shoots	115
4.3.2.3. Effect of adding IBA at 0, 0.5, 1 and 1.5 mgl ⁻¹ on rooting %,	
number of roots, root length and shoot length of Aegle marmelos	
shoots	116
4.4. The acclimatization of <i>pyracantha fortuneana</i> and <i>Aegle marmelos</i>	119
5. SUMMARY AND CONCLUSION	121
6. REFERENCES	129
7. ARABIC SUMMARY	145

LIST OF TABLES

No.		Page
1.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on survival percentage of Pyracantha	
	explants	27
2.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on contamination percentage of Pyracantha	
	explants	30
3.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on death and browning percentage of	
	Pyracantha explants	31
4.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on survival percentage of Aegle explants	34
5.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on contamination percentage of Aegle	
	explants	36
6.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on browning percentage of Aegle explants	38
7.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on survival percentages of Clerodendrum	
	explants	39
8.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on contamination percentages of	
	Clerodendrum explants	41
9.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on browning percentages of Clerodendrum	
	explants	43
10.	Effect of different concentrations of sodium hypochlorite (NaOCl)	
	during different periods on callus formation percentages of	
	Clerodendrum explants	44
11.	Effect of bud type on the percentages of bud swelling, shooting and	
	callus formation of <i>Pyracantha</i> explants	45

12.	Effect of bud type on bud swelling, shooting and callus formation on <i>Aegle</i> explants	4
13.	Effect of bud type on bud swelling, shooting and callus formation on <i>Clerodendrum</i> shoot tip and stem node explants which resulted from	
	surviving explants	48
14.	Effect of adding different garlic extract (G.E) concentrations without	_
15.	autoclaving to show the contamination percentage Effect of different garlic extract concentrations on average number of	5
13.	proliferated shoots, shoot length and leaves number of <i>Pyracantha</i>	
	Microshoots	53
16.	Effect of different garlic extract concentrations on average number of	
	proliferated shoots, shoot length and leaves number of <i>Aegle</i>	
	microshoots	54
17.	Effect of different garlic extract concentrations on average number of	
	proliferated shoots, shoot length and leaves number of	
	Clerodendrum microshoots	5
18.	Effect of BAP and Kin at different concentrations on average number	
	of proliferated <i>Pyracantha</i> shoots in the first subculture	5
19.	Effect of BAP and Kin at different concentrations on average number	
	of proliferated <i>Pyracantha</i> shoots in the second subculture	6
20.	Effect of BAP and Kin at different concentrations on average number	
	of proliferated <i>Pyracantha</i> shoots in the third subculture	6
21.	Efect of BAP and Kin at different concentrations on average shoot	
	length (cm) of <i>Pyracantha</i> shoots in the first subculture	6.
22.	Effect of BAP and Kin at different concentrations on average shoot	
	length (cm) of <i>Pyracantha</i> shoots in the second subculture	6
23.	Effect of BAP and Kin at different concentrations on average shoot	
	length (cm) of <i>Pyracantha</i> shoots in the third subculture	6
24.	Effect of BAP and Kin at different concentrations on average number	
	of leaves of <i>Pyracantha</i> shoots in the first subculture	7
25.	Effect of BAP and Kin at different concentrations on average number	
	of leaves of <i>Pyracantha</i> shoots in the second subculture	7.

26.	Effect of BAP and Kin at different concentrations on average number	
	of leaves of <i>Pyracantha</i> shoots in the third subculture	75
27.	Effect of number of microshoots per jar at 2, 4, 6, 8, 10 microshoots	
	planted together	78
28.	Effect of adding activated charcoal to medium at 1, 3, 5 and 5 g\l on	
	number of leaves, number of shoots and shoot length of Aegle shoots	82
29.	Effect of BAP and Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl ⁻¹ on average	
	number of proliferated shoots / microshoot in the first subcultures of	
	Aegle shoot.	86
30.	Effect of BAP and Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl ⁻¹ on average	
	shoot length (cm) in the first, second and third subcultures of Aegle	
	shoots	92
31.	Effect of BAP and Kin at 0, 0.5, 1, 1.5, 3 and 5 mgl ⁻¹ on average	
	number of leaves / microshoot in the first, second and third	
	subcultures of Aegle shoots.	98
32.	Effect of BAP and Kin at 0, 1, 3 and 5 mgl ⁻¹ on average number of	
	proliferated Clerodendrum microshoots.	104
33.	Effect of BAP and Kin at 0, 1, 3 and 5 mgl ⁻¹ on averages shoot length	
	of Clerodendrum microshoots	105
34.	Effect of BAP and Kin at different concentrations on average leaves	
	number of Clerodendrum microshoots.	107
35.	Effect of BAP and Kin at 0, 1, 3 and 5 mgl ⁻¹ on callus weight of	
	Clerodendrum microshoots	108
36.	Effect of adding IBA at 0, 1, 3 and 5 mgl ⁻¹ on rooting media of	
	pyracantha microshoots	112
37.	Effect of adding IBA at 0, 0.5, 5, 10, 15, 20 and 25 mgl ⁻¹ on rooting	
	%, number of roots, root length and shoot length of <i>Aegle</i> shoots	116
38.	Effect of adding IBA at 0, 0.5, 1 and 1.5 mgl ⁻¹ on rooting %, number	
	of roots, root length and shoot length of <i>Aegle</i> shoots	116