AIN SHAMS UNIVERSITY UNIVERSITY COLLEGE FOR WOMEN FOR ART, SCIENCE AND EDUCATION

Some Studies on The Color Rendering Index and Luminance of Light Sources

Ph.D Thesis

By

Abdel Nasser El-Kamel Mohamed

B. Sc. Faculty of Science, Hellwan University

M.Sc. AIN SHAMS UNIVERSITY, UNIVERSITY COLLEG FOR WOMEN FOR ART, SCIENCE AND EDUCATION

Supervisors

Prof. Dr. A. B. AL-bially

Professor of spectroscopy University College for Art, Science and Education Ain shams University

Prof.Dr.: M. M. El-Ganayny

Photometry Department National Institute for Standard (NIS)

2010

AIN SHAMS UNIVERSITY UNIVERSITY COLLEGE FOR WOMEN FOR ART, SCIENCE AND EDUCATION

APPROVAL SHEET

Student's Name: Abdel Nasser El-kamel Mohamed Thesis Title : Some studies on the color rendering Index and luminance of light Sources

Degree : Ph.D (Physics)

Supervision Committee

Prof. Dr. : Aida Badr AL-Bialy

Prof. Dr. : M. M. El-Ganainy

Date of Research:

Graduation B. Sc. Hellwan University, Faculty of

Science (Cairo), 1991

Date of approval:

Stamp: /2010

Approval Faculty Council: Approval University Council:

/ 2010 / 2010

ACKNOWLEDGEMENT

I am greatly grateful to
Prof. Dr. M.M. EL-Ganainy,
Professor of Photometry Department
National Institute for Standard
(NIS)
Prof. Dr. A. B. AL-Bialy
Professor of spectroscopy

Professor of spectroscopy
Ain Shams University
For planning this work valuable
Guidance, continuous, assistance
Throughout the period of research, and
Help in setting up the workin this
present form.

Also, I am appreciating the head and staff members of the Physics department for encourage me to finish this work.

بسم الله الرحمن الرحيم

Summary	I
INTRODUCTION	II
Chapter I: Previous work	
Photometric Quantities and Units	1
I.1.1. Visual Sensation	1
I.1.2. Photometric quantities	11
I.1.3 Photometric Units	
I.1.4. Apparent Brightness	14
I.2. Light sources	17
I.2.1. Black body radiation	17
I.2.2. Radiation from real bodies	19
I.2.3. Tungsten lamps	20
I.2.4. Fluorescent lamps	24
I.2.4.1. The color of fluorescent lamps	27
I.2.4.2. Wide and narrow-band phosphors	28
I.2.4.3. Factor influencing the efficiency of the fluorescent	29
coating	
1.2.4.4.Reflector lamps	33
1.2.4.5.Compact fluorescent lamps	33
I.2.5. High-pressure mercury lamps	36
I.2.6. Blended light lamp	37
I.2.7. CIE standard illuminants	38
I.3. Colorimetric properties of light sources	39

I.3.1. Tristimulus values and chromaticity coordinates	39
I.3.2. Uniform chromaticity scale	41
I.3.3.Color-temperature, radiance temperature. Correlated	43
color temperature, and dominant wavelength	
I.3.4. Color rendering	44
I.3.5. The test color samples	48
I.4. Choice of reference illuminant for the test color method	50
I.4.1. Color rendering index by test-color method	51
I.4.2. Designation of color rendering index	51
I.4.3. Calculation of Special and General Color Rendering	52
indices	
Chapter II. Theoretical aspects	
II.1. The Theoretical approach	53
II.1.1. The importance of enhancing color rendringindex	53
II.1.2. The calculation of the illuminance provided by	54
lighting system on the working plane	
II.1.3. The use of complementary light to enhance the color	55
rendering index	
II.1.4. The integration of the artificial lighting system by	55
another artificial one.	
II.1.5. The chromaticity and color rendering of mixed light	58
II.1.6. The sequence of color rendering calculation of mixed	61

light	
II.2. Visual sensitivity of the investigated lamps.	67
II.3. The relation between the luminance and color	68
rendering for the investigated lamps and Munsell's samples	
II.4.Brightness sensation in an interior	71
II.4.1. The calculation of the brightness of the Munsell's	73
samples using the investigated lamps.	
II.5. The uncertainty in the determination of the color	75
rendering index	
Chapter III	
Experimental work	88
III.1. Experimental determination of the factor affecting the	88
quality of lighting system	
III.1.1.The determination of the spectral power	88
distribution (SPD) for some investigated lamps	
III.1.2. Description of the spectroradiometer	93
III.1.3. The results of measuring the spectral power	95
distribution of the investigated light sources	
III.2 Luminance of light sources	101
III.2.1. Luminance measurements using spectroradiometer	103
III.3. Luminous flux measurements using	108
integrated sphere	108
III 3.1 Photometric equipments	

III.3.2. The substitution method	112
III.3.3. The procedure of measurement the	113
luminous flux of light sources	
Chapter IV	
Calculation, Results and discussion	115
IV.1. The calculation of the chromaticity and color	115
rendering indices for the investigated lamps	
IV.1.1. Chromaticity and color rendering for individual lamps	115
IV.1.2. Calculation of the special and general color rendering	118
indices for mixed light.	
IV.1.2.a Calculation of the dominant wavelength for the	118
different lamp types.	
IV.1.2.b. The mixture containing fluorescent lamp	120
IV.1.2.C. Concerning the mixture consisting of 40 watt	120
fluorescent lamp and 150 watt incandescent lamp.	
IV.1.2.d. For the light mixture consisting of the light emitted	121
from 160 watt blended lamp and that from 150 watt	
incandescent lamp	
IV.1.2.e. The light mixture consists of light emitted from 250	122
watt mercury high pressure lamp and that from 150 watt	
incandescent lamp.	
IV.2. The relation between the proportional of combination	123
and visual sensitivity	

IV.4.The results of calculation of the luminance and color	127
rendering for Munsell's samples under investigated lamps	
IV.5.The relation between luminance and the color rendering	128
of the investigated lamps.	
IV.6. The results of calculations of the uncertainty	130
in the determination of the color rendering indices:	
IV.7. Discussion	134
IV.8.Conclusions	136

Summary

To realize the quality of the lighting system the following conditions must be satisfied:

1-To make sure that the lighting system provides the required levels of illuminance or luminance without any occurrence of glare, which means that good quality of lighting

2- The lighting sources used must have elevated color rendering index.

So the work carried out is concerned to study the factors determined the quality of the lighting system, i.e. the color rendering, visual sensitivity, the luminance and brightness and the relations between these factors to optimize their parameters. The thesis consists of summary (English and Arabic) general introduction and four chapters.

The first chapter includes the fundamental concepts which include the definitions of the photometric quantities and their units, the colorimetric parameters, the method used to determine the special and general color rendering indices and the characteristics of some different lamp types.

The second chapter includes the following (1) the method used to enhance the color rendering of the lighting system by integrating the light emitted from one type of lamp with that emitted from another i.e. using the mixed light method adopted