

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

USE OF MEAT AND BONE MEAL ASH IN CEMENT BASED MATERIALS

Ву

Eng. Hend Bahgat Ali Bayoumy

B.Sc. Civil Engineering Asyut University, 1997

A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Structural Engineering

Supervisors

Dr. Yehia Abdel-Zaher Ali

Dr. Mona Mostafa Abd El-Wahab

Associate Professor
Structural Engineering Department
Faculty of Engineering- Ain Shams University

Associate Professor
Structural Engineering Department
Faculty of Engineering- Ain Shams University

"إِن الله لا يضيع أجر من أحسن عملا"

صدق الله العظيم

Thanks God,
My parents, my
husband,
My sons and my sister

INFORMATION ABOUT THE STUDENT

Student Name: Hend Bahgat Ali Bayoumy

Date of Birth: 2/9/1975

Place of Birth: Assiut-Egypt

Degree : B-Sc. In Civil Engineering, 1997

Faculty of Engineering –Assiut University

Structural diploma, 2006

Faculty of Engineering –Ain Shams University

Current Job : Civil Engineer in General Authority for Educational

Buildings

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

No part of this thesis has been previously submitted for obtaining a degree or a qualification before.

Name: Hend Bahgat Ali Bayoumy

Signature:

Date: 25/11/2010

Ain Shams University

Faculty of Engineering

Thesis Title: Use of Meat and Bone Meal Ash in Cement Based Materials

Researcher Name: Hend Bahgat Ali Bayoumy

Supervision Committee

Dr. Yehia Abdel-Zaher Ali

Associate Professor

Structural Engineering Department - Faculty of Engineering –Ain Shams University

Dr. Mona Mostafa Abd Al-Wahab

Associate Professor

Structural Engineering Department - Faculty of Engineering –Ain Shams University

ACKNOWLEDGMENTS

I would like to express my ultimate gratitude and regards to *Dr. Yehia Abdel Zaher Ali* for his supervision and encouragement to complete my degree of Master after Diploma of Science in Civil Engineering.

I would like to express my plentiful thanks and regards to *Dr. Mona Mostafa Abdel Wahab* for her kind care, tolerance, support and help during this work.

I would like to express my sincere thanks to *Dr. Mamdooh Mohamed Ahmed*, the general manager of the Automatic Abattoir of AL Basateen, for his unlimited help during this work.

I would like to express my deep thanks for *Eng. Fareed Elgbbas*, for his continuous help and advice. Also, the best thanks to the members of the Properties and Testing of Materials Laboratory at the Faculty of Engineering, Ain Shams University, for their help and cooperation.

I would like to thank all members of The National Research Centre, specially *Dr. Ahmed Ismail* and *Dr. Shamaa Dahab*. Also, all members of The National Institute for standards, specially *Prof. Dr. Samaha Saied Hussien*, *Dr. Khaled El-Nagar* and *Dr. Dalia Essa* for their help in carrying out the external experimental tests, and all members of The Center of Metals Development Researches, specially *Prof. Dr. Suzan Ibraheem*.

I wish to thank *Eng. Abdel Rahman Awad* the owner of Al- Sabeny Factory of Glue and *Dr. Yehya Zakareia* the manager of the factory laboratory for their effective help.

I would like to thank *Eng. Eslam* and *Eng. Emad* the members in BASF Chemical Company of admixtures for their ultimate help to supplying the superplastisizers for the experimental work.

I wish to thank my cousin *Mr. Ahmed Husain* for his totally dedication to help.

Last, but not least, I would like to thank my family, *Dad*, *Mum*, *my husband* and *my lovely sons*, for their support, encouragement and cooperation throughout this work and thank my work friends specially *Eng. Eman Abdel Hakam* and *Mrs. Fatma Fekry* for their effective help and encouragement.

Ain Shams University Faculty of Engineering Structural Engineering Department

Master of Science, 2010 Eng. Hend Bahgat Ali Bayoumy

ABSTRACT

Quantities of bone wastes have been on the rise in recent years after the bovine spongiform encephalopathy (BSE) crisis, which contracted cows and buffaloes all over the world specially Europe, and can no longer be used to feed cattle and must be safely disposal of or transformed. So, the best option became the incineration which produces huge amount of ash that should be managed by using in several applications as industry, agriculture, fuel, and in construction field, which is considered a suitable solution to manage these ashes and to protect the surrounding environment from the hazardous elements which leach by the conventional methods of disposal. Also, it is considered an economic solution because of saving the high tax of landfill.

This thesis studied the potential of using bone ash and meat and bone meal (MBM) bottom ash in construction field. The physical and chemical characteristics of bone ash and MBM bottom ash were presented. The experimental program was design to study the effect of using bone ash and MBM bottom ash in concrete as sand replacement with substitution levels from 0 to 100%, or as cement replacement with substitution levels from 0 to 30%. The effect of using the two types of ashes on the mechanical properties of concrete (compressive strength, splitting tensile strength and flexural strength) was investigated. The durability of

concrete incorporating ash was investigated for concrete specimens submersed in acid solution by concentration of 2% for 90 days after curing. The environmental impacts of the concrete incorporating MBM bottom ash were studied by carrying out leaching tests, to determinate the quantities of leachable elements.

The results of the compression tests indicated that the concrete mix incorporating 30% of MBM bottom ash in the dry state as sand replacement was the optimum mix. The result of the compressive strength of the optimum mix was approximately equal to that of the control mix which contained no ash. The result of the flexural strength of the optimum mix was 73.7% of that of the control mix, while the result of the splitting tensile strength of the optimum mix was 85.3% of that of the control mix.

The best results of the compressive strength for the four cases; using MBM bottom ash as sand replacement in saturated state, the case of using bone ash as sand replacement in the dry and the saturated states, and the case of using MBM bottom ash in the saturated state as cement replacement were for the substitution level of 10%.

The results of the durability test indicated that the decrease in compressive strength of concrete specimens incorporating MBM bottom ash which were submersed in the acid solution for 90 days after hardening was approximately equal to that of the control mix under the same conditions.

The results of the leaching test indicated that when bone wastes (bone ash and MBM bottom ash) were used in concrete as sand replacement either

in the dry state or the saturated state, and as cement replacement in the saturated state, the quantities of leachable elements are considered either non-hazardous element or inert element which means that there is no

harmful environmental impacts from using bone waste in concrete.

This thesis consists of five chapters as follow:

Chapter 1: "Introduction"

Chapter 2: "Review of literature"

Chapter 3: "Experimental Work"

Chapter 4: "Test Results"

Chapter 5:" Conclusions and Recommendations"

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	i
ABSTRACT	iii
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
CHAPTER 1	
1. INTRODUCTION	1
1.1 General	1
1.2 Scope	1
1.3 Outline of the thesis	2
CHAPTER 2	
2. LITERATURE REVIEW	
2.1 Introduction	4
2.2 Types of Wastes	5
2.3 Wastes Disposal	5
2.4 Land Fill Impacts	7
2.5 Management Of Wastes	8
2.5.1 Benefits of management	9
2.5.2 Management options	11
2.5.2.1 Prevention of wastes	11
2.5.2.2 Minimization of wastes	12
2.5.2.3 Energy recovery	13
2.5.2.4 Reuse of wastes and its history	14
2.5.2.5 Recycling of wastes and its history	15
2.6 Recycling of Solid Wastes	18
2.6.1. Rubber	18
2.6.2 Glass	20
2.6.3 Plastic	21
2.6.4 Paper	22
2.7 Recycling of fine wastes	24
2.7.1 Foundry sand	24
2.7.2 Silica fume	24
2.7.3 Slag	26
2.7.4 Cement kiln dust	27

2.8 Recycling of liquid wastes	28
2.8.1 Waste water	28
2.8.2 Used oil	31
2.9 Recycling of ashes wastes	32
2.9.1 Coal fly ash	32
2.9.2 Rice husk ash	34
2.9.3 Wood ash	35
2.9.4 Bone ash	36
2.10 Utilization of MBM and Bone Ashes	40
2.10.1 Industry	40
2.10.2 Agriculture field	41
2.10.3 Medical field	41
2.10.4 Fuel field	41
2.10.5 Extraction of heavy metals	43
2.10.6 Electricity field	43
2.10. 7 Civil construction	44
CHAPTER 3	
3. EXPERIMENTAL PROGRAM	
3.1 Introduction	47
3.2 Aim of Work	47
3.3 Research Program	48
3.4 Phase One: Studying of the Physical and Chemical	
Characteristics of Bone Ash and MBM Bottom Ash	50
3.4.1 Types of ashes	50
3.4.2 The physical characteristics of bone ash and MBM bottom ash	52
3.4.3 The chemical characteristics	54
3.5 Phase Two: Studying the Effect of Using Bone Ash and	55 55
MBM bottom Ash in Concrete	33
3.5.1 Used material	55
3.5.1.1 Cement	55 55
3.5.1.2 Coarse aggregates	55 55
3.5.1.3 Sand	56
3.5.1.4 Mixing water	56
3.5.1.5 Bone ash and MBM bottom ash	56
3.5.1.6 Admixtures	57
3.5.2 Mix proportions	58
3.5.3 Mixing, Casting and Curing	61
3.5.4 Testing	62
3.5.4.1 Compression test	62

3.5.4.2 Indirect tension test(splitting test)	62
3.5.4.3 Flexure test	63
3.5.4.4 Durability test	63
3.6 Phase Three: Studying the Environmental Impact of	64
Concrete	
3.6.1 Preparation of samples	65
3.6.2 Testing	65
CHAPTER 4	
4. TEST RESULTS AND DISCUSSIONS	
4.1 Introduction	67
4.2 Results of Phase one: Physical and Chemical	67
Characteristics of Bone Ash and MBM Bottom Ash	
4.2.1 Physical characteristics of bone ash and MBM	67
bottom ash	
4.2.1.1 Particle size distribution	67
4.2.1.2 Density, bulk density, specific area and	69
water absorption coefficient	0)
4.2.1.3 The electronic scanning microscopy (ESM)	70
observation of bone ash MBM bottom ash	, 0
4.2.2 Chemical characteristics of bone ash and MBM	71
bottom ash	, 1
4.3 Results of Phase Two: The Effect of Using Bone Ash	72
and MBM Bottom Ash in Concrete as Sand or Cement	
Replacement	
4.3.1 Compression tests results	72
4.3.1.1 Compressive strength of concrete mix	72
4.3.1.2 Compressive strength results of concrete	72
incorporating MBM bottom ash as sand	, _
replacement in the dry state	
4.3.1.3 Compressive strength results of concrete	74
incorporating bone ash as sand replacement	, ,
in the dry state	
4.3.1.4 Compressive strength results of concrete	75
incorporating MBM bottom ash as sand	13
replacement in the saturated state	
4.3.1.5 Compressive strength results of concrete	77
	, ,
incorporating bone ash as sand replacement in the saturated state	
	78
4.3.1.6 Compressive strength results of concrete	10
incorporating MBM bottom ash as cement	
replacement in the saturated state	

4.3.2 Splitting tension tests results	79
4.3.3 Flexure test results	80
4.3.4 Results of the durability test	82
4.4 Results of Phase Three: The Environmental Impact of	86
Concrete Incorporating Bone Ash and MBM Bottom Ash	
CHAPTER 5	
5. CONCLUSIONS AND RECOMMENDATIONS	
5.1 Introduction	90
5.2 Conclusions	90
5.3 Recommendations	92
5.4 Further Work Needed	93
REFERENCES	94