THE ROLE OF POSITRON EMISSION TOMOGRAPHY/ COMPUTED TOMOGRAPHY IN LIVER MALIGNANCY

Essay

Submitted for partial fulfillment of Master degree in Radio-diagnosis

By

May Atef A.El Gelel

M.B., B.Ch. (2004)

Faculty of Medicine Cairo University

Supervised By

A. Prof. Dr. Dalia Zaki Zidan

A. Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Dr. Osama Abo ElNaga Khallaf

Lecturer of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Contents

1	Introduction and aim of work	1
2	Anatomy of the liver	3
	a) Gross anatomy.	
	b) CT anatomy.	
	c) Normal PET appearance.	
3	Pathology of malignant hepatic tumors.	36
4	PET and PET/CT techniques	65
5	Manifestations of PET/CT in liver malignances	102
	with illustrated cases	
6	Summary and concl usion	137
7	References.	139
8	Arabic summary.	-

Lists of Figures

Figure No.	Title	Page
1-1a	Superior aspect of the liver	4
1-1b	Superior aspect of the liver	7
1-2	Inferior aspect of the liver	7
1-3	Inferior and posterior surfaces of the liver.	8
1-4	Inferior aspect of the liver.	8
1-5	Segmental anatomy of the liver.	12
1-6	Functional classification of the liver	13
1-7	Normal anatomy of the liver	16
1-8	Portal Circulation.	19
1-9	Most common branching patterns of the	22
(A&B&C&D)	intrahepatic portal vein.	
1-10 (A&B&C&D)	Normal CT anatomy of the liver.	25
1-11	Normal hepatic arterial anatomy.	27
1-12	Hepatic venous confluence.	27
1-13	Normal portal venous anatomy.	28
1-14	Variant hepatic arterial anatomy.	28
1-15	Replaced left hepatic artery	29
1-16	Replaced right and left hepatic arteries.	29
1-17	Early branching of the left hepatic artery.	30
1-18	Portal vein trifurcation.	30
1-19	Two large right hepatic veins draining the right lobe of the liver.	31

1-20	Physiological uptake of FDG	33
2-1	Large HCC with mosaic pattern	43
2-2	Macroscopic view showing a homogeneous encapsulated HCC without necrosis or hemorrhage.	44
2-3	Macro infiltrative form of HCC.	44
2-4	HCC with portal invasion.	45
2-5	Hepatocellular carcinoma architecture	47
2-6	Fibrolamellar hepatocellular carcinoma.	49
2-7	Hepatocholangiocarcinoma.	52
3-1	Annihilation radiation.	71
3-2	Uptake of FDG	72
3-3	Photograph (frontal view) of a hybrid PET-CT scanner.	74
3-4	Coincidence Detection	75
3-5	Coincidence imaging.	76
3-6	Mean positron range and annihilation angle blurring.	77
3-7	Radial blurring	78
3-8	Scatter and Random Coincidence.	79
3-9	PET/CT system.	83
3-10	PET/CT image.	85
3-11	Side view of hybrid PET-CT scanner shows PET(P) and CT (C) components	86
3-12	Typical imaging protocol for combined PET/CT	87
3-13	Display screen of the syngo software platform shows fused PET-CT in recurrent esophageal carcinoma.	93

3-14 A&B&C	Motion artifact.	97
3-15 (A&B)	Attenuation correction artifact.	98
3-16	Physiologic muscle activity.	99
3-17 (A&B&C)	Contrast media artifact.	100
3-18	Streak artifacts.	101
4-1 (a&b)	Restaging of liver in colorectal carcinoma by PET/CT.	106
4-2 (A&B&C&D)	Metastatic mucinous adenocarcinoma of cecum with liver metastasis occurs in FDG-PET.	107
4-3 (A&B&C)	PET/CT fused image indicated a right hepatic focus with metastatic adenocarcinoma of colon.	107
4-4 A,B,C	[18F]FDG / [11C]acetate PET/CT for the evaluation of suspicious recurrent Rt HCC.	111
4-5 A,B&C	Well differentiated HCC versus benign focal lesion.	112
4-6 A&B&C	Patient with left hepatic mass. PET was requested for further assessment.	113
4-7 A&B&C&D& E&F	Evaluation of patient who underwent radiofrequency for liver malignancy using PET/CT.	115
4-8 A&B&C&D& E&F	Evaluation of patient who underwent chemoembolization for liver malignancy using PET/CT.	117

4 -9 A&B&C&D	Role of PET/CT in evaluation of recurrence of HCC.	118
4-10 A&B&C	Role of PET /CT in the detection of tumoral portal vein thrombosis.	120
4-11 A,B,C	PET was requested to evaluate CC and possible extrahepatic primary.	123
4-12 A&B&C&D	PET/CT evaluate peripheral CC.	124
4-13 A,B,C&D	PET/CT shows hilar cholangiocarcinoma with LN metastases.	125
4-14 A&B&C	PET/CT shows hilar cholangiocarcinoma with peritoneal metastases.	126
4-15	Metastatic HCC with PET/CT.	129
4-16 A&B	Detection of residual or recurrent tumor in metastatic liver lesions after radiofrequency ablation by PET/CT.	132
4-17 A&B	Recurrent or residual tumor in metastatic liver lesions after RFA by PET/CT.	132
4-18 A,B,C	Role of PET/CT In evaluating response of treatment of hepatic metastasis by RFA.	133
4-19 A&B&C&D	Role of PET/CT in detection of recurrent hepatic metastases.	135

LIST OF ABBREVIATION

ACFs	Attenuation correction factors
AFP	Alfa feto protein
BGO	Bismuth germinate
BMI	Body mass index
11C-ACT	11 choline acetate
CA	Celiac artery
CBD	Common Bile Duct
CC	Cholangiocarcinoma
CD	Cystic Duct
CEA	Carcinoembryonic antigen
CHD	Common Hepatic Duct
CM	Contrast Media
CNS	Central nervous system
CRC	Colorectal cancer
CT	Computed tomography
CTA	CT Angiography
CTAC	CT-based attenuation correction
DAS	Data acquisition system
3D	Three-dimensional

2D	Two-dimensional
DNA	Deoxynucleic acid
ECT	Emission computed tomography
18-F	18-Fluorine
FCAT	Federative Committee on Anatomical Terminology
FDA	Food And Drug Admistrition
18-FDG	18-flourodeoxyglucose
Fig.	Figure
GDA	Gasteroduodenal Artery
GI	Gastero-intestinal
GLUT	Glucose transporters
GSO	Gadolinium silicate
H+	Hydrogen ion
HA	Hepatic artery
HBV	Hepatitis B Virus
НСС	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HU	Hounsfield Unit
IV	Intra-venous
IVC	Inferior Vena Cava
KeV	Killo Electron Volt

KV	Killo Volt
LGA	Left Gastric Artery
LHA	Left Hepatic Artery
LHD	Left Hepatic Duct
LHV	Left Hepatic Vein
LOR	Line Of Response
LSO	Lutetium oxyorthosilicate
MDCT	Multi-detector row computed tomography
MHA	Middle Hepatic Artery
MHV	Middle Hepatic Vein
MIP	Maximum Intensity Projection
MRI	Magnetic resonance imaging
mSV	Milliseviert
PET	Positron emission tomography
PET/CT	Positron emission tomography/Computed
	Tomography
PHA	Proper Hepatic Artery
PSF	Point spread function.
PV	Portal Vein
RFA	Radiofrequency Ablation
RHA	Right Hepatic Artery

RHD	Right Hepatic Duct
RHV	Right Hepatic Vein
RPPV	Right posterior portal vein
RPV	Right portal vein
SPECT	Single photon emission computed tomography
SUV	Standardized uptake value.
SUVmax	Maximum Standardized uptake value
TACE	Transcatheter Arterial Chemoembolization
TNM	Tumor, node, metastasis
US	Ultrasound
B+	Positron
В-	Electron

List of Tables

Table	Title	PAGE
no.		
1-1	The summary of the classifications of the liver segments.	15
1-2	Hepatic Arterial Variants according to the Michel Classification	21
2-1	Classification of malignant tumor of liver	37
2-2	TNM staging of liver tumors	55
2-3	Okuda system criteria for staging of hcc	56
2-4	Okuda staging system for hcc	56
3-1	Common radionuclides used in PET	71

INTRODUCTION AND AIM OF THE WORK

Cancer is a major cause of death in the developed world, and is becoming a significant issue for developing countries as they adopt a more westernized lifestyle, including greater consumption of alcohol and tobacco. (*Jones et al.*, 2006).

The incidence of primary liver malignancies has significantly increased over the last 20 years. Hepatocellular carcinoma (HCC) is globally the commonest liver primary, and cholangiocarcinoma the second commonest primary liver tumour. Cholangiocarcinoma accounts for 3% of all gastrointestinal cancers. Mesenchymal liver tumors are rare, but include hepatic angiosarcoma and primary hepatic lymphoma (*Vauthey and Blumgart*, 2009).

The most common malignant tumors in the liver are metastases from wide variety of neoplasms, that most frequently are carcinomas from colorectal, breast, and lung primaries. Often discovered as solitary, liver metastases can be effectively treated with surgery (*Arciero and Sigurdson*, 2008).

Treatment in oncology relies on correct tumor staging for patients with malignant diseases. All morphologic imaging modalities, including CT, ultrasound, conventional radiography, and MRI, share the same mechanism for detecting malignant diseases (*Kuehl et al.*, 2007).

The role of cross-sectional imaging can include the diagnosis of malignancy, staging of confirmed cancers, assessment of response to treatment, planning of neoadjuvant treatment (such as radiotherapy) and surveillance both pre- and post-operatively. PET-CT allows an evaluation of the physiological and biochemical processes underlying malignant disease and consequently offers a new perspective in the treatment of intraabdominal malignancies (*Garcea et al.*, 2009).

[18F]-Fluoro-2-deoxy-D-glucose-positron-emission/computed-tomography imaging (FDG PET/CT) is currently one of the most used oncological staging and therapy follow-up techniques and is worldwide used and reimbursed for a wide variety of cancers (*Nehmeh and Erdi*, 2008).

AIM OF THE WORK

The aim of the work is to highlight the role of PET/CT in the evaluation of liver malignancies.

Anatomy Of The Liver And Its Vascular Supply

The liver is the largest abdominal viscera, occupying a substantial portion of the upper abdominal cavity. It occupies most of the right hypochondrium and epigastrium, although it frequently extends into the left hypochondrium as far as the left lateral line. In adults the liver weights 2% of body .It is composed largely of epithelial cells (hepatocytes), which are bathed in blood derived from the hepatic portal veins and hepatic arteries(*Standering*, 2008).

Gross morphology

Hepatic Surfaces:

The liver having superior, anterior, right, posterior and inferior surfaces, and has a distinct inferior border. However, superior, anterior, right surfaces are continuous with no definable borders (*Standring et al.*, 2008).

The gross anatomical appearance of the liver has been divided into right, left, caudate and quadrate lobes by the surface peritoneal and ligamentous attachments. The falciform ligament superiorly and the ligamentum venosum inferiorly, mark the division between right and left lobes. On the posterior surface, to the right of the groove formed by the ligamentum venosum, there are two prominences separated by the porta hepatis. The quadrate lobe lies anteriorly, the caudate lobe posteriorly. The gallbladder usually lies in a shallow fossa to the right of the quadrate lobe (*Standring et al., 2008*).

Superior surface: (Fig. 1.1a&b)

A sharp, well-defined margin divides the inferior from the superior in front the other margins are rounded. The superior surface is attached to the diaphragm and anterior abdominal wall by a triangular or falciform fold of peritoneum, the falciform ligament, in the free margin of which is a rounded cord, the ligamentum teres (*obliterated umbilical vein*). The line of attachment of the falciform ligament divides the liver into two parts, termed the right and left lobes, the right being much larger (*Standring et al.*, 2005).

The superior surface is the largest surface and lies immediately below the diaphragm, separated from it by peritoneum except for a small triangular area where the two layers of falciform ligament diverge. It is related to the right diaphragmatic pleura, base of the right lung, pericardium, ventricular part of the heart, part of the left diaphragmatic pleura and base of the left lung (*Standring et al.*, 2008).

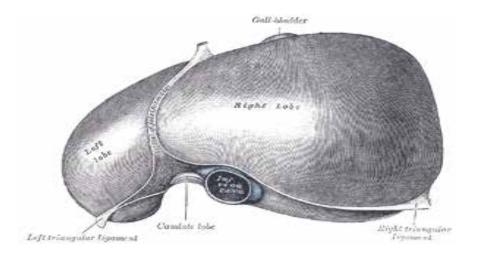


Fig. 1.1a: The superior surface of the liver. (Quoted From Standring et al., 2005).