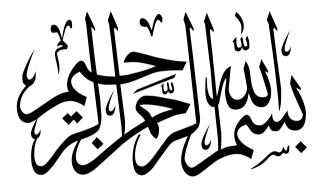


Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Remote Sensing to Recognize Static objects

A Thesis
Submitted in Partial Fulfillment of the
Requirements of the Degree of
Master of Science in Electrical Engineering
(Computer & Systems)

Submitted By
Samer Mahmoud Hessin


B. Sc., Electrical Engineering (Electronic Computers)
Military Technical College, 1989

Supervised By

Prof. Dr. Abd El-Moneim Wahdan

Prof. Dr. Mohamed Zaki Abd El-Magyd

Cairo 2005

Date: / /2004

EXAMNERS COMMITTEE

Degree: Master of Science in Electrical Engineering

Name: Samer Mahmoud Hussin

Thesis: Remote Sensing of Static objects

(Computer & Systems)	C	C
Name, Title and Affiliation		Signature
Prof. Dr.		
Prof. Dr.		
Prof. Dr. Abd El-Moneim Wahdan Department of computer Science The American University in Cairo		
Prof. Dr. Mohamed Zaki Department of computer Science The American University in Cairo		

Acknowledgements

Frrst, I would like to thank ALLAH for all his graces.

I would like to express my deep appreciation to Prof. Dr. Abd El-Moneim Wahdan, Prof. Dr. Mohamed Zaki Abd El-Magyd for their great care, supervision, and continuous advises to me during preparing my thesis.

ABSTRACT

Samer Mahmoud Hessin

Remote Sensing to Recognize Static objects

Master of Science in Electrical Engineering (Computer & Systems)

Ain Shams University, 2003

In pattern recognition of static objects, the objective is to extract basic features for each object and to rely upon these features to distinguish between various kinds of objects. It has been found that there is a need to represent the original objects data in effective ways to overcome the limited digital number representation (0 - 255) for the panchromatic satellite images and the digital number interference of the multi-spectral images. For feature extraction of panchromatic satellite images a frequency analysis using Fourier transform is implemented. However, for the multi-spectral analysis principal components transform has been exploited, since the image elements generated by digital data from various bands often appear similar and convey essentially the same information.

This thesis presents a model-based design that can be used to distinguish between various kinds of objects in image files. This model could be carried out using three applied methods capable of detailed analysis for satellite images. With different features and / or object parameters, users can apply this model in other cases on different objects.

Three approaches have been adopted to extract the features that would enable differentiation between the objects. They are as follows:

<u>First</u>: Fourier Transform, which transforms the image into a frequency domain.

<u>Second</u>: Principal Components, which analyzes the image into its basic orthogonal components.

<u>Third</u>: Region Basde, an approach, which is based on the matching process between the same kinds of features to ensure each object's type.

The model presented in this thesis has successfully led to detecting the features in order to recognize the objects.

Moreover, the model has helped extracting various features for each object for the purpose of future automatic classification.

Contents

Chapter 1: Introduction	1
1.1 Historical Review	1
1.2 Objectives	2
1.3 Thesis organization	2 3 5
Chapter 2: Image Processing	5
2.1 Information Extracting By Remote Sensing.	5
2.2 Spectral Factors In Remote Sensing.	7
Chapter3 : Digital Image Transformations and	10
Data Models	
3.1 Statistical Properties Of Texture	10
3.1.1 Texture Transformation	10
3.2 Data Models	11
3.2.1 Univariate Image Statistics	12
3.2.1.1 Histogram	12
3.2.1.2 Normal Distribution	13
3.2.1.3 Cumulative Histogram	15
3.2.1.4 Statistical Parameters	16
3.2.2 Multivariate Image Statistics	18
3.3 Spatial Transforms	20
3.3.1 Fourier Synthesis	22
3.3.2 Discrete Fourier Transform In 2-D	23
3.3.3 Fourier Components	28
3.4 Spectral Transforms and Principal Components	29
Chapter4: Objects Segmentation	33
4.1 The proposed model.	33
4.2 Fourier Transform Analysis	35
4.2.1 The Fourier Transform Calculation	36
4.2.2 Fourier Magnitude	36
4.2.3 Fourier Coefficient	37
4.2.4 Texture Statistics	39
4.3 Principal Component Analysis	39
4.4 Region-Based Analysis	40
Chapter5: Implementation	43
5.1 Fourier Transform analysis	43
5.1.1 Buildings	43

5.1.2 Water	45
5.1.3 Fields	46
5.1.4 Trains	48
5.2 Principal Component analysis	49
5.2.1 Buildings	50
5.2.2 Water	50
5.2.3 Fields	50
5.3 Region-Based analysis	51
5.3.1 Examples	51
5.3.2 Comparison of Statistics	57
5.4 Performance Evaluation	58
5.4.1 Buildings features	58
5.4.2 Water features	60
5.4.3 Fields features	61
5.4.4 Trains features	62
5.5 Discussion	62
5.5.1 Buildings	62
5.5.2 Water	63
5.5.3 Fields	64
5.5.4 Trains	65
5.6 Comparison	66
5.6.1 Comparison with Related Tools	66
5.6.2 Comparison between the fourier analysis and principal component for buildings	67
5.6.3 Comparison between the fourier analysis	68
and principal component for water	
5.6.4 Comparison between the fourier analysis	68
and principal component for fields	
Chapter 6: Conclusion, and Future Work	69
6.1 Conclusion	69
6.2 Future work	71
Appendix A: Software Aspects and Specification	72
Appendix B: Software Features	73
Appendix C: Satellite Images Technical Specification	74
References	75

Table of Tables

Table 2.1 THE PRIMARY SPECTRAL REIGON	S 8
USED IN EARTH REMOTE SENSING.	
Table 2.2 MICROWAVE WAVELENGTHS AND	9
FREQUENCIES USED IN REMOT	Ξ
SENSING.	
Table 3.1 EXAMPLE LOCAL GRADIENT FILTERS.	21
Table 5.1 BUILDING COEFFICIENT AS	44
FEATURE.	
<i>Table 5.2</i> WATER COEFFICIENT AS A FEATURE.	45
<i>Table 5.3</i> FIELDS COEFFICIENT AS A FEATURE.	47
<i>Table 5.4</i> TRAINS COEFFICIENT AS A FEATURE.	49
Table 5.5 BUILDING EIGEN VALUE AS	A 50
FEATURE.	
Table 5.6 WATER EIGEN VALUE AS A FEATURE.	50
Table 5.7 FIELDS EIGEN VALUES AS A FEATURE	. 50

Table of Figures

Figure 2.1	AN EXAMPLE OF HOW MAPS AND	6
	IMAGERY COMPLEMENT EACH OTHER.	
Figure 3.1	A DISCRETE NOTATION COMPARED	12
rigure 3.1	TO A CONTINOUS NOTATION.	12
Eigung 2.2	AN EXAMPLE IMAGE HISTOGRAM	14
Figure 3.2		14
	DISTRIBUTION WITH THE SAME MEAN	
F: 2.2	AND VARIANCE.	1.5
Figure 3.3	COMPARISON OF AN EXAMPEL IMAGE	15
	CUMULATIVE HISTOGRAM TO A	
	GAUSSIAN CUMULATIVE HISTOGRAM	
	USING THE SAME DATA.	
Figure 3.4	VISUALIZATION OF A THREE-BAND	18
	MULTISPECTRAL IMAGE PIXEL AS A	
	VECTOR IN THREE-DIMENSIOND	
	SPACE.	
Figure 3.5	EXAMPLE OF LOCAL GRADIENT	21
	FILTERS.	
Figure 3.6	DN THRESHOLD APPLIED TO THE	22
	GRADIENT MAGNITUDE.	
Figure 3.7	FORURIER SYNTHESIS OF A 1-D	25
O	SQUARE WAVE SIGNAL BY	
	SUPERPOSITION OF SINE WAVE	
	SIGNALS.	
Figure 3.8	FORURIER SYNTHESIS OF A 2-D	26
.0	SQUARE WAVE.	
Figure 3.9	FORURIER SYNTHESIS OF A TM	32
- 18 13	IMAGE.	_
Figure 4.1	THE PROPOSED MODEL.	34
Figure 4.2	FOURIER COFFICIENT DEGREDATION.	38
Figure 5.1	SAMPLE IMAGE OF BUILDING NO (1).	43
Figure 5.1	SAMPLE IMAGE OF BUILDING NO (2).	43
Figure 5.3	SAMPLE IMAGE OF BUILDING NO (3).	43
Figure 5.4	SAMPLE IMAGE OF BUILDING NO (4).	43
rigure 3.4	DAME LE INIAGE OF DOILDING NO (4).	7.

Figure 5.5	SAMPLE IMAGE OF BUILDING NO (5).	44
Figure 5.6	SAMPLE IMAGE OF BUILDING NO (6).	44
Figure 5.7	SAMPLE IMAGE OF BUILDING NO (7).	44
Figure 5.8	SAMPLE IMAGE OF BUILDING NO (8).	44
Figure 5.9	SAMPLES IMAGE OF WATER NO (1).	45
Figure 5.10	SAMPLES IMAGE OF WATER NO (2).	45
Figure 5.11	SAMPLES IMAGE OF WATER NO (3).	45
Figure 5.12	SAMPLES IMAGE OF WATER NO (4).	45
Figure 5.13	SAMPLE IMAGE OF FIELDS NO (1).	46
Figure 5.14	SAMPLE IMAGE OF FIELDS NO (2).	46
Figure 5.15	SAMPLE IMAGE OF FIELDS NO (3).	46
Figure 5.16	SAMPLE IMAGE OF FIELDS NO (4).	46
Figure 5.17	SAMPLE IMAGE OF FIELDS NO (5).	46
Figure 5.18	SAMPLE IMAGE OF FIELDS NO (6).	46
Figure 5.19	SAMPLE IMAGE OF FIELDS NO (7).	47
Figure 5.20	SAMPLE IMAGE OF FIELDS NO (8).	47
Figure 5.21	SAMPLE IMAGE OF TRAINS NO (1).	48
Figure 5.22	SAMPLE IMAGE OF TRAINS NO (2).	60
Figure 5.23	SAMPLE IMAGE OF TRAINS NO (3).	48
Figure 5.24	SAMPLE IMAGE OF TRAINS NO (4).	48
Figure 5.25	SAMPLE IMAGE OF TRAINS NO (5).	48
Figure 5.26	SAMPLE IMAGE OF TRAINS NO (6).	48
Figure 5.27	SAMPLE IMAGE OF TRAINS NO (7).	49
Figure 5.28	ORIGINAL IMAGE.	51
Figure 5.29	OBJECT1 URBAN FROM THE ORIGINAL	52
	IMAGE.	
Figure 5.30	OBJECT2 URBAN FROM THE ORIGINAL	52
	IMAGE.	
Figure 5.31	OBJECT3 BOAT FROM THE ORIGINAL	53
	IMAGE.	
Figure 5.32	OBJECT4 WATER FROM THE ORIGINAL	53
	IMAGE.	
Figure 5.33	OBJECT1 URBAN AFTER APPLYING	53
	(3x3) AS A MASK.	
Figure 5.34	OBJECT2 URBAN AFTER APPLYING	54
	(3x3) MOVING WINDOW AS A MASK.	
Figure 5.35	MATCHED OBJECT1 AND OBJECT2	54
	WITH THE ORIGINAL IMAGE.	

Figure 5.36	MATCHED OBJECTS 1,2,3,4 WITH	55
	ORIGINAL IMAGE.	
Figure 5.37	ORIGINAL IMAGE2 WITH (3x3) AS	55
	MASK FILTER.	
Figure 5.38	OBJECT5 FROM ORIGINAL IMAGE 2.	56
Figure 5.39	MATCHED OBJECT5 WITH ORIGINAL	56
	IMAGE2.	
Figure 5.40	COEFFICIENT RANGE OF BUILDINGS	58
	OBJECTS.	
Figure 5.41	EIGEN VALUE RANGE OF BUILDINGS	59
	OBJECTS.	
Figure 5.42	COEFFICIENT RANGE OF WATER	60
	OBJECTS.	
Figure 5.43	EIGEN VALUE RANGE OF WATER	60
_	OBJECTS.	
Figure 5.44	COEFFICIENT RANGE OF FIELDS	61
_	OBJECTS.	
Figure 5.45	EIGEN VALUE RANGE OF FIELDS	61
	OBJECTS.	
Figure 5.46	EIGEN VALUE RANGE OF TRAINS	62
_	OBJECTS.	
Figure 5.47	BUILDINGS EVALUATION.	62
Figure 5.48	WATER EVALUATION.	63
Figure 5.49	FIELDS EVALUATION.	64
Figure 5.50	TRAINS EVALUATION.	65

APPENDIX A: Software aspects and specification:

Software definition:

The software used while, planning, designing, developing and testing of the model is **ERDAS IMAGINE V8.3.**

System requirements:

Requirements with Windows NT 4.0

System	Intel Pentium (Pentium II or higher recommended).	
Operating system	Windows NT 4.0.	
Service Pack	Service Pack 4 (or better).	
Memory	64 MB .	
Hard Disk Space	660 MB.	
Display	Super VGA 800 x 600 x 256 colors (1024x768x64k colors recommended).	
Install Media	Microsoft window compatible CD-ROM drive.	
Mouse	Microsoft window compatible mouse(Microsoft Intellimouse recommended).	
Parallel Port	Centronics Parallel port.	

Requirements with windows 98

System	Intel Pentium (Pentium II or higher recommended).
Operating system	Windows 98
Memory	64 MB (128 MB highly recommended).
Hard Disk Space	660 MB.
Display	Super VGA 800 x 600 x 256 colors (1024x768x64k colors recommended).
Install Media	Microsoft window compatible CD-ROM drive.
Mouse	Microsoft window compatible mouse(Microsoft Intellimouse recommended).
Parallel Port	Centronics Parallel port.

APPENDIX B : **Software Features**:

- 1) A map-based graphical tool for indexing, viewing, managing and archiving data .
- 2) The ability to natively display and process a wide variety of raster formats without having to first import them .
- 3) Unequaled power and ease in displaying, combining, analyzing and presenting all types of geographic data.
- 4) Interactively pan, zoom, rotate and enhance data.
- 5) Geographically link or overlay multiple data sets and re-project on-the-fly.
- 6) Quickly and accurately register imagery to the reference system, with over 225 map projections and datum's.
- 7) Visual interpretation, heads-up digitizing and image categorization tools.
- 8) Batch wizard processing to automate production process.
- 9) Fully automated processes speed the creation of single imagemap or complete-map series.

APPENDIX C

APPENDIX C IKONOS SATELLITE IMAGES FEATURE

- 1- SPATIAL RESOLUTION: 1-meter panchromatic, 4-meter multispectral.
- 2- Panchromatic: 0.45-0.90 mm.
- 3- Multispectral: 0.45-0.53 mm (band 1-blue).

: 0.52-0.61 mm (band 2-green). : 0.64-0.72 mm (band 3-red).

: 0.77-0.88 mm (band 4-near infrared).

4- scene size : 11 X 11 km.

LANDSAT SATELLITE IMAGES FEATURE

- 1- SPATIAL RESOLUTION: 15-meter panchromatic, 30-meter multispectral.
- 2- Panchromatic: 0.52-0.90 mm.
- 3- Multispectral: 0.45-0.52 mm (band 1-blue).

: 0.53-0.61 mm (band 2-green). : 0.63-0.69 mm (band 3-red).

: 0.78-0.90 mm (band 4-near infrared).

: 1.55-1.75 mm (band 5-near infrared).

: 10.4-12.5 mm (band 6-thermal).

: 2.09-2.35 mm (band 7-middle infrared).

4- scene size: 185 X 185 km.

Chapter 1 Introduction

1. Introduction

1.1 **Historical Review**

Recognition, of a pattern, could be of a variety of types, ranging from a template of the pattern, to a set of features or measurements that characterize the pattern, or a structural description based on such features [1]. Various images including satellite, medical image contain significant amount of texture information. Efficient ways of extracting this information using statistical [2] and structural approach [3], [4] to describe the texture pattern have been investigated.

Test results show that the texture features which can effectively define directional and spatial and frequency characteristics of the patterns may lead to good texture analysis and classification results.

Since the introduction of the Fast Fourier Transform, the spectral analysis to extract features has become one of the most frequently used tools in signal and image processing.

Principal component analysis has proven to be of significant value in the analysis of remotely sensed digital data [4]. Principal component transformation is a technique designed to remove or reduce redundancy in multispectral data, this transformation may be applied either as an enhancement operation prior to visual interpretation of the data, or as a preprocessing procedure prior to automated classification of the data.