LATERAL CEPHALOMETRIC GROWTH CHANGES IN YEMENIS (CROSS SECTIONAL STUDY)

A Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University in partial fulfilment of the requirements For the Master's Degree of Clinical Dental Science (Orthodontics)

BY SAMAH AHMED YOUSEF Al-SHARIF B.D.S University of Science and Technology Sana'a-Yemen 2002

FACULTY OF ORAL AND DENTAL MEDICINE CAIRO UNIVERSITY

SUPERVISORS

Prof. Hoda Mohamed Abdel Aziz Attia

Professor of Orthodontics,

Faculty of Oral and Dental Medicine

Cairo University

Prof. Fatma Abdou Abd Elsayed

Professor of Orthodontics,

Faculty of Oral and Dental Medicine,

Cairo University

DEDICATION

To my family for their continuous

Help,

Love,

Support

And for being there whenever I needed

them.

ACKNOWLEDGEMENT

I would like to express my deep thanks and sincere gratitude to **Prof. Dr. Hoda Mohamed Abdel Aziz Attia,** Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her guidance, patience, encouragement and help throughout this work.

Deepest appreciation and thanks are dedicated to **Prof. Dr. Fatma Abdou Abd Elsayed** Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her scrupulous supervision, unlimited help, valuable advice and spiritual support during this study.

I acknowledge with gratitude and love **Prof. Dr.** Sanaa Abou Zeid Soliman Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her endless patience, sincerity and guidance.

Countless thanks are extended to all my professors, stuff members and colleagues of the Orthodontic Department for their support and concern.

Special thanks go to all who helped me throughout this work, without their great help this work would have never ended.

CONTENTS

•	List of Tables	i
•	List of Figures	iii
•	Introduction	1
•	Review of Literature	3
•	Aim of the study	32
•	Material and Methods	33
•	Results	45
•	Discussion	60
•	Summary & Conclusions	68
•	References	71
•	Appendices	V
•	Arabic summary	

List of Tables

		page
Table (1):	Descriptive statistics and one way ANOVA for linear	
	skeletal measurements among the three groups	47
Table (2):	Descriptive statistics and one way ANOVA for angular	
	skeletal measurements among the three groups	50
Table (3):	Descriptive statistics and one way ANOVA for linear	
	dental measurements among the three groups	53
Table (4):	Descriptive statistics and one way ANOVA for angular	
	dental measurements among the three groups	54
Table (5):	Results of Cronbach's alpha and ICC for intra-observer	
	reliability	58
Table (6):	Results of Cronbach's alpha and ICC for inter-observer	
	reliability	59
Table (7):	Descriptive statistics of linear skeletal measurements for	
	GI: 7.34 ± 0.65 years	xi
Table (8):	Descriptive statistics of angular skeletal profile	
	measurements for GI: 7.34 ± 0.65 years	xi
Table (9):	Descriptive statistics of linear dental measurements for	
	GI: 7.34 ± 0.65 years	xii
Table(10):	Descriptive statistics of angular dental measurements	
	for GI: 7.34 ± 0.65 years	xii
Table (11):	Descriptive statistics of linear skeletal measurements for	
	GII: 11.11 ± 1.07 years	xiii
Table (12):	Descriptive statistics of angular skeletal profile	
	measurements for GII: 11.11 ± 1.07 years	xiii

Table (13):	Descriptive statistics of linear dental measurements for	
	GII: 11.11 ± 1.07 years	xiv
Table (14):	Descriptive statistics of angular dental measurements	
	for GII: 11.11 ± 1.07 years	xiv
Table (15):	Descriptive statistics of linear skeletal measurements for	
	GIII: 22.17 ± 3.0 years	XV
Table (16):	Descriptive statistics of angular skeletal profile	
	measurements for GIII: 22.17 ± 3.0 years	xiv
Table (17):	Descriptive statistics of linear dental measurements for	
	GIII: 22.17 ± 3.0 years	XV
Table (18):	Descriptive statistics of angular dental measurements	
	for GIII: 22.17 ± 3.0 years	XV

List of Figures

		page
Fig. (1):	A photograph of Lateral cephalometric radiograph	
	showed Digitized Anatomic Points	37
Fig. (2):	Lateral cephalometric view showing linear skeletal	
	measurements	37
Fig. (3):	Lateral cephalometric view showing angular skeletal	
	measurements	39
Fig. (4):	Lateral cephalometric view showing linear dental	
	measurements	41
Fig. (5):	Lateral cephalometric view showing angular dental	
	measurements	41
Fig. (6):	A bar graph illustrating comparison between linear	
	skeletal measurements in the three groups	48
Fig. (7):	A bar graph illustrating comparison between angular	
	skeletal measurements in the three groups	51
Fig. (8):	A tracing showing assessment of facial profile growth	
	changes: the cephalograms were registered at S and	
	superimposed along SN	52
Fig. (9):	A tracing showing assessment of maxillary and	
	mandibular growth changes: the cephalograms were	
	registered at N and superimposed along	
	SN	52
Fig. (10):	A bar graph illustrating comparison between	
	linear dental measurements in the three	
	groups	55

Fig. (11):	A bar graph illustrating Comparison between	
	angular dental measurements in the three	
	groups	55
Fig. (12):	A tracing showing assessment of maxillary dentition	
	growth changes: the cephalograms were registered at	
	ANS and superimposed along PP	56
Fig. (13):	A tracing showing assessment of mandibular dentition	
	growth changes: the cephalograms were registered	
	at Pm and superimposed along Xi	
	Pm	56

INTRODUCTION

Introduction

In orthodontic diagnosis and treatment planning, a cephalometric radiograph is an essential tool to relate patients with different malocclusions to their associated norms.

When Broadbent introduced his cephalometer in 1931, a new era began in orthodontics. More stable relationships among teeth, jaws, faces, and head structures as well as more successful treatments were deemed possible. Since that time, cephalometric analyses have been routinely used to determine the relationships of the dentofacial complex. Cephalograms can also helps the orthodontist to determine the changes associated with growth and orthodontic treatment.

The cephalometric norms of different ethnic and racial groups established in various studies showed that normal measurements for one group are not necessarily normal for another group; each racial group must be treated according to its own characteristics. Since a number of standards have been developed for various racial and ethnic groups, it is important to compare a patient's cephalometric findings with the norms for his or her ethnic group for an accurate diagnostic evaluation.

Awareness of the normal dentofacial pattern of different ethnic groups of various ages will undoubtedly ensure greater success in orthodontic treatment.

Orthodontics is still a young branch of dentistry in Yemen. However, the numbers of Yemeni patients seeking orthodontic treatment and orthognathic surgery have been increasing. Nevertheless, little cephalometric studies have been conducted for Yemenis.

Harmonious facial esthetics and optimal functional occlusion have long been recognized as the most important goals of orthodontic treatment. To accomplish these goals, knowledge of normal craniofacial growth and the effects of orthodontic treatment on the soft and hard tissue profile are essential.

It is well known that knowledge of the normal craniofacial growth and dentofacial patterns of various ethnic and age groups is very important for clinical diagnosis, treatment planning and research. Since these knowledge were deficient for Yemenis, the idea of the present study was brought up

REVIEW OF LITERATURE

Review of Literature

Half a century ago or even more men in the field of orthodontics have been searching for an aiding tool for diagnosis and treatment plane, until Roentgen discovered the x-rays in 1895 providing the answers to questions that other relatively limited technique were unable to answer. Since that time a host of others have left their finger prints on the cephalograme by their attempt to posture the head in a standardized position, developing measurements, formulating norms (according to age, sex, and race), and even studying lateral cephalometric growth changes, as it is going to be clarified below.

Pacini. A (1922)¹, introduced the first oriented lateral skull radiograph by aligning the subject's head by inspection so that the median sagittal plane was parallel to the film, the head was supported by a vertical head rest and immobilized by means of gauze bandage used to strap it to the film holder. A constant target film distance of 2½ feet was employed and the central rays were directed one inch above and in front of the external auditory meatus. He defined certain landmarks on the lateral skull radiograph including the gonion, pogonion, nasion and the anterior nasal spine.

Broadbent. B (1931)², developed a cephalostat with two ear rods inserted in the external auditory meatus as a head holder so that the Frankfort horizontal plane was parallel to the floor, and the median plane of the head was maintained parallel to the film at fixed distance (10cm).