OVARIAN RESERVE IN PELVIC ENDOMETRIOSIS

A thesis Submitted for fulfillment of MD Degree in Obstetrics & Gynecology

By

Ibrahim Mohamed Ibrahim Ali

M.B.B.Ch – Ain Shams University – 2001 M.Sc. Obstetrics and Gynecology – Ain Shams University – 2006 Assistant Lecturer at Obstetrics and Gynecology Department Ain Shams University

Supervised By

Prof. Essam Mohamad Khater Elshikh

Professor of Obstetrics & Gynecology Ain Shams University

Prof. Karim Hassanein Abd-El-Maeboud

Professor of Obstetrics and Gynecology
Ain Shams University

Prof. Mohamed Ibrahim Mohamed Amer

Professor of Obstetrics and Gynecology
Ain Shams University

Prof. Sanaa Eissa Mohamed

Professor of Medical Biochemistry
Ain Shams University

Dr. Ahmed Adel Tharwat

Lecturer in Obstetrics and Gynecology
Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

بسم الله الرحمن الرحيم

الْحَمْدُ لِلّهِ الَّذِي هَدَانَا لِهَذَا وَمَا كُنَّا لِهُ لَهُ الَّذِي هَدَانَا اللّهِ لِنَمْتَدِي لَوْلا أَنْ هَدَانَا اللّه

صدق الله العظيم سورة الاعراف – ايه 43

Acknowledgment

Thanks are all due to God for blessing this work until it has reached its end as a part of his generous help throughout my life.

I wish to thank and to express my sincere gratitude to *Prof. Esam Mohamed Khater Elshikh, Prof. Karim Hassanein Abd-El-Maeboud and Prof. Mohamed Ibrahim Mohamed Amer* "Professors of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University", *Prof. Sanaa Eissa Mohamed* "Professor of Medical Biochemistry, Faculty of Medicine, Ain Shams University" and *Dr. Ahmed Adel Tharwat* "Lecturer in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University" for their indispensable guidance, unforgettable help and support in every step were behind the accomplishment of this work.

Words fail to express my sincere appreciation to **Dr. Manar Hamdy Mahmoud** "PHD in Medical Biochemistry,

ODU, Faculty of Medicine, Ain Shams University" and **Dr. Ahmed El-Sayed** "Lecturer in Obstetrics and Gynecology,

Faculty of Medicine, Ain Shams University" for the great

efforts they have given to perform the laboratory work and
the statistical analysis of this study.

Ibrahim Zewail

DEDICATION TO MY

MOTHER,

FATHER

AND MY

FAMILY

Contents

Title	Page
Introduction	1-3
Aim of work	4
Review of literature	5-98
1- Endometriosis	5-69
2- Ovarian reserve	70-98
Subjects & methods	99-115
Results	116-123
Discussion	124-140
Conclusions	141
English summary	142-148
References	149-188
Arabic summary	189

List of Tables

Table	Title	Page
No.		
1	Description of least function (LF) terms.	44
2	Cytotoxic agents according to the degree of	77
	gonadotoxicity.	
3	Demographic data of included 60 women.	117
4	Comparison between groups as regard patients'	
	characteristics.	
5	Comparison between groups as regard ovarian	119
	reserve markers.	
6	Comparison between preoperative and	122
	postoperative ovarian reserve markers in	
	endometriotic cyst group	
7	Preoperative and postoperative markers of	123
	ovarian reserve in monolateral and bilateral	
	endometriotic cyst groups.	

List of Figures

Fig. No.	Title	Page	
1	Common locations of endometriosis within the abdomen and pelvis.	8	
2	Activation of COX-2 in endometrial stromal cells results in upregulation of PGE ₂ . Aromatase activity results in intracellular aromatization of androgens to increase intracellular estradiol via an intracrine mechanism.		
3	Normal pelvis: uterus in anteversion giving a panoramic view of the pelvis.	20	
4	Hypervascular appendix infiltrated by endometriosis.	25	
5	Superficial endometriotic deposit in Caesarean section scar.	26	
6	Endometriosis of the cervix.	27	
7	TVS demonstrating ovarian endometrioma. A cyst with diffuse internal low-level echoes is seen.	31	
8	Magnetic resonance imaging (MRI) scans demonstrating severe endometriosis.	32	
9	Severe endometriosis with both ovaries adherent to the ovarian fossae and the rectum pulled up obliterating the pouch of Douglas.		
10	Below the irrigator tip, a red and white endometriotic lesion is seen on the pelvic peritoneum during laparoscopy.	34	
11	The American Society for Reproductive Medicine revised classification of endometriosis.	38	
12	Stage I endometriosis with superficial endometriosis on the uterosacral ligament and peritoneal pocketing.	39	

13	The ovary has been lifted up from the pelvic	40	
	side wall revealing superficial endometriosis		
	and hemosiderin staining.		
14	Right ovarian endometrioma adherent to the	40	
	ovarian fossa.		
15	Bilateral ovarian endometriomas and kissing	41	
	ovaries.		
16	Endometriosis fertility index surgery form.	45-46	
17	The endometrioma wall was excised with the	104	
	stripping technique up to the hilus. The		
	excised cyst wall was cut with scissors from		
	the remaining part.		
18	The remaining part of the endometriotic cyst	104	
	was coagulated with bipolar forceps applied to		
	the part of the cyst wall adherent to the		
	ovarian hilus.		
19	Study flow chart.	116	
20	Correlation between serum FSH & AFC of the	120	
	included 60 women using correlation		
	coefficient.		
21	Correlation between serum FSH & the ratio of	120	
	number of follicles less than 6mm in diameter		
	to total AFC of the included 60 women using		
	correlation coefficient.		
22	Correlation between serum AMH & FSH of	121	
	the included 60 women using correlation		
	coefficient.		
23	Correlation between serum FSH & per follicle	121	
	AMH secretion of the included 60 women		
	using correlation coefficient.		

List of Abbreviations

	LIST OF ADDICARCIONS
AFC	antral follicle count
AFS	American fertility society
AMF	Anti Mullerian factor
AMH	Anti-Mullerian hormone
ART	Assisted reproductive technique
ASRM	American society of reproductive medicine
BMD	Bone marrow density
BMI	Body mass index
CA 19.9	Cancer antigen 19.9
CA-125	Cancer antigen-125
CCCT	Clomiphene citrate challenge test
CD2	Cycle day 2
CDC	Centers for Disease Control
COCP	Combined oral contraceptive pills
СОН	Controlled ovarian hyperstimulation
COX-2	Cyclooxygenase type 2
CRF	Case record form
D&C	Dilatation and curettage
DMPA	Depot medroxyprogesterone acetate
DNA	Deoxy nucleic acid
DVD	Digital Versatile/Video Disc
E ₂	Estradiol
EFI	Endometriosis fertility index
EFORT	Exogenous FSH ovarian reserve test
ELISA	Enzyme linked immunosorbent assay
FSH	Follicle stimulating hormone
GA	General anasthesia
GAST	Gonadotropin releasing hormone agonist
	stimulation test
GnRH	Gonadotrophin releasing hormone
GnRHa	Gonadotrophin releasing hormone analogue
hCG	Human chorionic gonadotrophin
HSG	hysterosalpingeogram
ICSI	Intracytoplasmic sperm injection
IL	Interleukin
IVF	In vitro fertilization
LFS	Least function score
LH	Luteinizing hormone
LNG-IUS	Levonorgestrel releasing intrauterine

	contraceptive device
MFD	mean follicular diameter
MIS	Mullerian inhibiting substance
MRI	Magnetic resonance imaging
NK	Natural killer
NSAIDs	Nonsteroidal antiinflammatory drugs
OCPs	Oral contraceptive pills
ORTs	Ovarian reserve tests
PCOS	Polycystic ovarian syndrome
PGE ₂	Prostaglandin E ₂
PP 14	Placental protein 14
PR	Pregnancy rate
PRL	Prolactin
PSV	Peak systolic velocity
rASRM	revised American society of reproductive medicine
RCTs	Randomized controlled trials
SD	Standard deviation
TCDD	Tetrachlorodibenzo-p-dioxin
TMB	tetramethylbenzidine
TNF	Tumor necrosis factor
TSH	Thyroid stimulating hormone
TVS	Transvaginal sonography
VEGF	Vascular endothelial growth factor
VOCAL	Virtual organ computer-aided analysis

meroduction

Introduction 1

Introduction:

Endometriosis is characterised by the presence, outside the endometrial cavity, of tissue that is morphologically and biologically similar to normal endometrium. This ectopic endometrial tissue responds to ovarian hormones undergoing cyclical changes similar to those seen in eutopic endometrium. The cyclical bleeding from endometriotic deposits appears to contribute to the induction of an inflammatory reaction and fibrous adhesion formation, and in the case of deep ovarian implants, leads to the formation of endometriomas or chocolate cysts (Caroline et al., 2007a). The current prevalence of endometriosis is estimated to be up to 10% (Vigano et al., 2004). The incidence has not increased in the last 30 years and remains at 2.37–2.49 per 1000 women per year, equating to an approximate prevalence of 6–8% (Hummelshoj et al., 2006).

The main clinical symptoms of endometriosis are infertility, dysmenorrhoea, dyspareunia, dyschezia and chronic pelvic pain (defined as pain of greater than 6 months duration and not cyclical in nature) (*Treloar et al., 2005a*). The gold standard for diagnosing endometriosis in the abdomen and pelvis is the visual identification of characteristic lesions at laparoscopy. In one study, this means of diagnosis was shown to be 97% sensitive and 77% specific (*Buchweitz et al., 2003*). During laparoscopy of the pelvis, a scoring system is often used to assess the severity of the disease. The most commonly used is the American Society of Reproductive Medicine system (rASRM score) which grades endometriosis as minimal

Introduction 2

(stage 1), mild (stage 2), moderate (stage 3) and severe (stage 4) (Chapron et al., 2003a).

Although many hypotheses exist to explain the condition between endometriosis and infertility, the precise mechanisms by which endometriosis leads to infertility remain unclear. While more extensive endometriosis may simply impair fertility by mechanical means, hypotheses concerning subtler forms of endometriosis have suggested that infertility is impaired due to disruption of ovum transport, interference with hormone support, ovulation dysfunction, detrimental effects on gametes and/or reduced granulosa cell steroidogenesis (*Toya et al.*, 2000).

Reduced granulose cell steroidogenesis has also been noted with diminished ovarian reserve (*Toya et al., 2000*). To evaluate the ovarian follicular status, classically, early follicular phase serum FSH, inhibin B, and E₂ levels have been measured. However, the usefulness of those measurements and its clinical utility is limited (*Broekmans et al., 2006*). In addition, the assessment of the number of antral follicles by ultrasonography may predict the number of retrieved oocytes after controlled ovarian hyperstimulation (COH) (*Hendriks et al., 2005a*).

Anti-Mullerian hormone (AMH) is produced by small, early antral follicles and was strongly connected to the number of small antral follicles than FSH, E₂, and even inhibin B levels *(Fanchin et al., 2003a)*. In vivo and in vitro studies

Introduction 3

showed that AMH has an inhibitory effect on primordial follicle recruitment and it decreases the sensitivity of follicles for the FSH-dependent selection for dominance. Besides its functional role in the ovary, serum AMH level serves as an excellent candidate marker of ovarian reserve (*Visser et al.*, 2006). In addition, AMH is a marker for ovarian reserve and, as previously demonstrated, a better predictor of the number of early antral follicles as FSH, inhibin B, E₂, and LH (*Eldar-Geva et al.*, 2005).

Patients with minimal/mild endometriosis present a decreased serum AMH level. In addition, the follicular cohort in those patients was heterogeneous compared to infertile patients with tubal obstruction. This finding may be associated with poorer results in terms of COH. Our data is the first direct evidence showing an important role of endometriosis in the follicular status and ovarian reserve, which could explain the subfertility in this group of patients (*Lemos et al., 2008*).

The association of elevated cycle day 3 E_2 and/or FSH levels with stage III/IV endometriosis, suggesting a reduction in ovarian reserve, is an important consideration in the management of infertility patients with endometriosis (*Hock et al., 2001*). The laparoscopic excision of ovarian endometriotic cysts is associated with a statistically significant reduction in ovarian reserve, which is partly a consequence of the damage to the ovarian vascular system (*Li et al., 2009*).

Aim of Work