INTERLEUKIN-10 GENE POLYMORPHISMS IN TYPE-2 DIABETIC PATIENTS WITH NEPHROPATHY

Thesis submitted for partial fulfillment of M.sc degree in Medical Biochemistry and Molecular Biology

BY

Engy Medhat Ahmed Abd El Megeed

M.B.B.Ch Faculty of Medicine - Cairo University

Supervised by:

Prof.Dr.Samia Mostafa Mohamed

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine-Cairo University

Prof.Dr. Manal Nabih El Deeb

Professor of Internal Medicine Faculty of Medicine - Cairo University

Dr .Nermeen Mohamed Hassan

Lecturer of Medical Biochemistry and Molecular Biology Faculty of Medicine-Cairo University

> Faculty of Medicine Cairo University

> > 2013

Acknowledgement

I am grateful and thankful to **Allah** for his blessing, care and mercy.

I am greatly honored to express my deep gratitude and faithfulness to **PROF**. **DR. SAMIA MOSTAFA MOHAMED**, Professor of Medical Biochemistry and Molecular Biology, Cairo University, for her wisdom, invaluable advice, support, encouragement and the sharing of her expertise. Really, I learned a lot from her.

I wish to thank **PROF.DR**, **MANAL EL DEEB**, Professor of Internal Medicine, Cairo University, for her generous help and goodness, meticulous revisions all through the work. She gave me much of her time, experience and support. Her valuable comments, efforts and collaboration were the causes to complete this work.

I wish to express my gratitude and appreciation to **DR**, **NERMEEN MOHAMED HASSAN**, Lecturer of Medical Biochemistry and Molecular Biology,
Cairo University, for her great help, faithful advice, kind support from the start and all through the work until its completion, and immense facilities she offered.

I would like to thank **PROF.DR. LAILA RASHED**; Professor of Medical Biochemistry and Molecular Biology, Cairo University, for her great help and cooperation.

Also, I would like to thank all the working staff in the unit of Medical Biochemistry and Molecular Biology, Cairo University who helped a lot during this work.

Last but not least, I would like to dedicate my work to my family whose prayers and support were the main motive for me to carry on.

CONTENTS

	Page
List of Tables	I-II
List of Figures	III-IV
List of Abbreviations	V-VII
Abstract	VIII
Introduction and Aim of the work	IX-XI
Review of Literature	
Diabetes Mellitus	1-3
Diabetic Nephropathy	4-32
Interleukins	33-48
Subjects and Methods	49-61
Results	62-73
Discussion	74-78
Conclusion and Recommendation	79-80
Summary	81-82
References	83-108
Index	
Arabic Summary	

LIST OF TABLES

<u>No.</u>	<u>Title</u>	Page
Table (1)	Diabetic Nephropathy Stages. Cutoff Values of	
	Urine Albumin for Diagnosis and Main Clinical	
	Characteristics	24
Table (2)	Clinical features of diabetic kidney disease, by	
	stage	25
Table (3)	Definitions of abnormalities in albumin	
	excretion	29
Table (4)	Prevention of the onset of diabetic nephropathy.	32
Table (5)	Age distribution among the studied groups	63
Table (6)	Sex distribution among the studied groups	63
Table (7)	Blood chemistry parameters and	
	microalbuminuria (mean \pm SD) in the subjects	
	studied	63
Table (8)	FBG levels (mean \pm SD mg/dl) among the	
	studied groups	64
Table (9)	HbA1c levels distribution among the studied	
	groups	65
Table (10)	Microalbuminuria levels (mean \pm S.D) among	
	the studied groups	66

<u>No.</u>	<u>Title</u>	<u>Page</u>
Table (11)	Plasma IL-10 levels (mean ± S.D) in all the studied groups	66
Table (12)	Correlation between HbA1c and plasma IL-10 levels in all the studied groups	67
Table (13)	Correlation between microalbuminuria and plasma IL-10 levels in all the studied groups	67
Table (14)	Distribution of IL-10 genotypes in all the studied groups	69
Table (15)	Distribution of IL-10 alleles among the studied groups	70

LIST OF FIGURES

<u>No.</u>	<u>Title</u>	Page
Figure (1)	Trend of Diabetic Nephropathy in Egypt	6
Figure (2)	Pathogenesis of Diabetic Nephropathy	17
Figure (3)	An algorithm for microalbuminuria screening	30
Figure (4)	Antigen presentation by DCs to naive T cells and other factors induces the T cells to produce ILs and differentiate into Th1, Th2, Th9, Th17, Th22, or follicular Th (TFh) cells	34
Figure (5)	IL-10 family members, all share common receptor subunits	37
Figure (6)	The IL-10 receptor and signaling	41
Figure (7)	Distribution of the study population	62
Figure (8)	FBG levels among the studied groups	64
Figure (9)	HbA1c levels among the studied groups	65
Figure (10)	Microalbuminuria levels among the studied groups	66
Figure (11)	IL-10 levels among the studied groups	67
Figure (12)	Correlation between microalbuminuria and plasma IL-10 levels in group 2	68
Figure (13)	IL-10 genotypes in all the studied groups	69

<u>No.</u>	<u>Title</u>	<u>Page</u>
Figure (14)	Agarose gel electrophoresis of PCR products of 592 of IL-10 gene	70
Figure (15A-B)	Agarose gel electrophoresis of PCR-RFLP analysis of 592 of IL-10 gene	71
Figure (16)	Agarose gel electrophoresis of PCR-RFLP analysis of 592 of IL-10 gene	72
Figure(17)	Agarose gel electrophoresis of PCR-RFLP analysis of 592 of IL-10 gene	73

LIST OF ABBREVIATIONS

ACE Angiotensin-converting-enzyme

ACR Albumin creatinine ratio

ADA American diabetes association

AER Albumin excretion rate

AGE Advanced glycation end product

ALT Alanine transaminase

ANA Against nuclear antigen

AP Activator protein

APCs Antigen presenting cells

ARBs Angiotensin receptor blockers

AT Angiotensin

bp Base pair

Bp Blood pressure

CHD Coronary heart disease

CKD Chronic kidney disease

C-MAF C-musculoaponeurotic fibrosarcoma factor

CNDP1 Carnosine dipeptidase 1 gene

CREB cAMP response element binding protein

CRF Chronic renal failure

CRP C-reactive protein

CSIF Cytokine synthesis inhibitory factor

DCs Dendritic cells

DM Diabetes mellitus

DN Diabetic nephropathy

EB Ethidium Bromide

EBP Enhancer binding protein

ECM Extracellular matrix

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme-linked immunosorbent assay

ELMO1 Engulfment and cell motility 1 gene

ESRD End-stage renal disease

FBG Fasting blood glucose

GFR Glomerular filtration rate

GSH Reduced glutathione

GVHD Graft-versus-host disease

HbA_{1c} Glycosylated hemoglobin

HDL High density lipoprotein

HIV Human immunodeficiency virus

HMCN -1 Hemicentin-1 gene

HRP Horse raddish peroxidase

ICOS Inducible T cell co-stimulator

IgG Immunoglobulin G

IL Interleukin

IRF Interferon regulatory factor

Jak Janus kinase

MAPK Mitogen-activated protein kinase

MHC Major histocompatibility complex

NF Nuclear factor

NK Natural killer

NKF National kidney foundation

PARP-1 Poly [ADP-ribose] polymerase 1

PBMCs Peripheral blood monocyte cells

PCR Polymerase chain reaction

PKC Protein kinase C

RA Rheumatoid arthritis

RFLP Restriction fragment length polymorphism

RNA Ribonucleic acid

ROS Reactive oxygen species

Rsa1 Rhodopseudomonas sphaeroides

SH2 Sarcoma homology 2

SHP Src(sarcoma) homology 2-domain containing tyrosine

phosphatase

SLE Systemic lupus erythematosus

SNP Single nucleotide polymorphism

SP Specificity protein

STAT Signal transducer and activator of transcription

T2DM Type 2 diabetes mellitus

TAE Tris-Acetate EDTA buffer

Taq Thermus aquaticus

TFh T-helper follicular

TGF-β Transforming growth factor -beta

Th T-helper

TMB Tetramethyl benzidine

TNF Tumor necrosis factor

TYK Tyrosine kinase

UAE Urinary albumin excretion

VEGF Vascular endothelial growth factor

Abstract

Background: Diabetic nephropathy is the most prevalent cause for endstage renal disease in the United States and the Western world.

In this disease, tubular injury and progressive interstitial fibrosis contribute significantly to renal failure and predict progression to end-stage renal disease. In early diabetic renal injury, there is podocyte drop-out which is thought to cause glomerular proteinuria and subsequent diabetic glomerular injury.

Different inflammatory molecules including pro-inflammatory cytokines have been proposed as critical factors in the development of microvascular diabetic complications including nephropathy.

Interleukin 10 (IL-10) polymorphic variants are linked with cytokine production and are involved in many chronic inflammatory diseases, including type 2 diabetes mellitus .

Aim of work: Analysis of IL-10 gene polymorphisms and study their possible association with IL-10 gene expression involved in the progression of diabetic nephropathy in type 2 diabetes mellitus.

Methods: For all subjects, IL-10 plasma levels (by ELISA), IL-10 – (-592) gene polymorphism (by PCR) were investigated.

Results: we found that the highest levels of IL-10 were in diabetic patients with nephropathy followed by diabetic patients without nephropathy with the lowest levels in normal healthy subjects. Also we found that there is an increase in the frequency of IL-10-(-592) AA genotype in diabetic nephropathy patients with a significant increase in A allele distribution in them compared to diabetic patients without nephropathy and healthy control subjects.

Conclusion: IL-10 and its gene polymorphism play an important role in the progression of diabetic nephropathy.

Keywords: Type 2 diabetes, diabetic nephropathy, interleukin-10, polymorphism.

Introduction

The prevalence of diabetes mellitus and its clinical complications are increasing rapidly worldwide. Diabetic nephropathy is a major cause of sickness and death in persons with diabetes; it is the leading cause of renal failure (*American diabetic association*, 2009).

Type 2 diabetes mellitus (T2DM) is recognized as one of the most common causes of end-stage renal disease (*Freedman et al.*, 1998). However, factors initiating progressive renal failure in T2DM patients remain largely unknown. In T2DM patients, a certain cytokine genotype is associated with an increased susceptibility to diabetic nephropathy (DN) in different countries (*Ezzidi et al.*, 2009). Research has shown that ethnicity greatly influences the distribution of genotypes and allele frequencies of cytokine polymorphisms (*Wan-Ju et al.*, 2010).

In Egypt, the prevalence of diabetic nephropathy as a cause of end-stage renal disease (ESRD) increased from 8.9% of patients in 1996 to 14.5% in 2001. The mean age of diabetic nephropathy patients was higher than that of patients with ESRD due to other causes. In addition, mortality among diabetic patients with ESRD in Egypt is higher than mortality for all other causes of ESRD which is probably related to the well known cardiovascular complications of diabetes (*Afifi et al.*, 2004).

Hyperglycemia and glomerular hypertension are the two main initiating and progression factors thus far identified in the development of nephropathy. Hyperglycemia probably acts via direct glucose toxicity, glycation and increased flux through the polyol and hexosamine pathways. It has been suggested that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain may be the

fundamental abnormality stimulating these individual pathways (Brownlee, 2001).

DN is the leading cause of ESRD. The pathogenesis of DN is multifactorial and is aggravated by hyperglycaemia (*Gross et al.*, 2005). Previous studies indicated genetic predisposition to DN, evidenced by the clustering of high urine albumin:creatinine ratio (ACR) cases among diabetic families (*Agius et al.*, 2006). While the exact mechanisms involved in the development and progression of DN remain to be seen, recent studies suggested the contribution of a chronic inflammatory state, related in part to diabetic complications, to T2DM pathogenesis (*Pickup*, 2004). It was suggested that local inflammatory events, oxidative stress, and excretion of proinflammatory cytokines mediated, at least in part, the metabolic and haemodynamic abnormalities linked with diabetic nephropathy.

DN is viewed as a state of low-grade chronic inflammation and role for interleukin 10 (IL-10) in its pathogenesis was proposed (*Mora and Navarro*, 2005). This was evidenced by the elevation in IL-10 levels in the sera of T2DM (*Wong et al.*, 2007) and type 1 diabetes (*Mysliwska et al.*, 2005), patients with nephropathy, and as IL-10 levels correlated with the extent of renal damage in DN (*Wong et al.*, 2007). This suggests that IL-10 promoter gene variants of chromosome 1q31-1q32 influence DN development and progression by regulating IL-10 production (*Mysliwska et al.*, 2005).

Currently, reports on the association of cytokine genotypes with cytokine phenotypic expression patterns of DN patients are still very limited.

Aim of the work

Analyses of IL-10 gene polymorphisms and their possible association with IL-10 gene expression to understand the role of genetics on pathogenesis and clinical expression of diabetic nephropathy in type 2 diabetes mellitus.

Diabetes Mellitus

Definition & Description:

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both (*Wold*, *Ceylan-Isik and Ren*, 2005). The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction and failure of various organs especially the eyes, kidneys, nerves, heart, and blood vessels (*American Diabetes Association*, 2009).

The International Diabetes Federation estimates that the prevalence of diabetes is higher in developed than in developing countries, but the major increase in people with diabetes will occur in developing countries. Type 2 DM is most common among the elderly people in the developed countries, while most people with diabetes in developing countries are middle-aged (45-64 years) (World Health Organization, 2009). Furthermore, a sedentary lifestyle and a high-carbohydrate diet are important risk factors (International Diabetes Federation, 2009).

Chronic Complications of Diabetes Mellitus:

Chronic complications of diabetes mellitus are broadly divided into two groups: namely macrovascular and microvascular complications (*Tooke*, 2000).

A- Macrovascular Complications of Diabetes Mellitus:

Cardiovascular disease is the most important cause of mortality and morbidity among patients with type II diabetes (*Mitsuhashi* et al., 2002). Several of the known cardiovascular risk factors are