Evaluation of the macular changes after successful retinal detachment surgery using optical coherence tomography

Thesis

Submitted in partial fulfillment of M.D. degree in ophthalmology

By

Sameh Mohamed M. Abou El-Khir M.B.B.Ch. M.Sc

Under the supervision of

Dr. Taha M. Abd El-Moniem Labib

Professor of ophthalmology Faculty if medicine Cairo University

Dr. Amr Abdel-Aziz Azab

Professor of Ophthalmology Research Institute of Ophthalmology

> Faculty of Medicine Cairo University Cairo 2013

Acknowledgements

First and foremost thanks to **Allah** who granted me the power to accomplish this work.

I would like to express my deep appreciation to **Prof. Dr. Taha Labib,** Professor of Ophthalmology, Faculty of Medicine, Cairo University, for his kind supervision wise guidance, patience, continuous encouragement and great help throughout this work.

I wish to express my sincere gratitude to **Prof Dr. Amr Azab** professor of ophthalmology, Research
Institute of Ophthalmology, for his great help,
continuous supervision and effort with me
throughout this study. He supplied me with valuable
informations which were important pillars in my
thesis.

My sincere appreciation to **Prof.Dr.med. Ulrich Bartz-Schmidt;** Professor of ophthalmology, Universityeye Eye Hospital Tuebingen, for for his generous assistant, constant support and guidance throughout the study.

I wish to thank all my patients, without whom this work would have never been completed.

Finally whatever I say will never be enough to thank my wife and family, I greatly appreciate their moral help, they were always supplying me with the feeling of hope, love and encouragement.

This thesis is dedicated to a great and special father and mother. It is also dedicated to a cooperative kind wife and to my beloved family.

Sameh M. M. Abou-El Khir

TABLE OF CONTENTS

	Table of Contents	i
•	List of Abbreviations	iii
•	List of Figures and Tables	iv
•	Introduction	1
•	Aim of the Work	5
•	Review of Literature	6
	Anatomy and Physiology of Retina and Subretinal Fluids	6
	- Macula, or Central Area	8
	- Fovea	8
	- Foveola	10
	 Phototransduction and Visual Processing 	12
	Retinal Pigment Epithelium	
	RPE membrane Properties and Fluid Transport	
	Adhesion of Photoreceptors to Retinal Pigment Epithelium	
	- Anatomy of Human Vitreous	18
	Pathophysiology of Rhegmatogenous retinal detachment	21
	- Mechanisms of normal attachment of NSR to RPE	
	22	
	 Pathogenesis of Rhegmatogenous retinal detachment 	24
	 Perpetuation and Extension of Rhegmatogenous Retinal Detachment 	
	Pathologic changes following retinal detachment	
	Pathologic changes following surgery for retinal detachment	31
	Management of Macula-off Rhegmatogenous retinal detachment	
	Historical Background	36
	Recent Surgical Approaches	
	- Scleral Buckling	
	- Pars Plana Vitrectomy	
	- Pneumatic Retinopexy	
	- Vitreous Substitutes	
	- Comparative Outcome	
	Combined Surgical Approaches	51
	Optical coherence tomography technology	
	53	
	- The progress of OCT in Ophthalmology	
	 Basic Principles of Optical Coherence Tomography	
	Different Optical coherence tomography technologies	60
	Time-domain versus Fourier/spectral-domain OCT	
	Available machines of different OCT technologies	
	5	

-	Patients and Methods	70
•	Results	73
•	Discussion	91
•	Abstract	100
•	References	101
•	Arabic Summery	118

List of Abbreviations

BCVA: Best Corrected Visual Acuity

BIOM: Binocular indirect ophthalmomicroscope

C2F6 : PerfluoroethaneC3F8 : PerfluoropropaneC4F8 : Perfluorobutane

ELM : External Limiting Membrane

FD : Fourier domain

FFA : Fundus fluorescein angiography

GCL : Ganglion cell layerGRT : Giant Retinal Tear

ICAM : Intracellular adhesion molecule

ILM : Internal limiting membrane

INL : Inner nuclear layerIOL : Intra-ocular lens

IOP : Intra-ocular Pressure

IS : Inner Segment

MMP Matrix Metalloproteinase

μm : Micrometer

NSR : Neurosensory Retina

OCT : Optical Coherence Tomography

OS : Outer Segment

PED : Pigment epithelial detachment

PFCL : Perfluorocarbon liquidppV : Pars Plana VitrectomyRD : Retinal detachment

ROE : Retinal Outer SegmentRPE : Retinal Pigment Epithelium

RRD : Rhegmatogenous Retinal Detachments

SB : Scleral BucklingSRF : Sub-Retinal Fluid

SFT : Subretinal Fluid Thickness

SRS : Subretinal Space

UHR : Ultrahigh-Resolution

VA : Visual Acuity
3-D : 3-Dimensional

List of Figures

Fig. (1.1):	Neuronal connections in the retina and participating cells	7
Fig. (1.2):	Foveal margin, foveal declivity, foveola, and umbo	8
Fig. (1.3):	Light micrograph of the macula	9
Fig. (1.4):	Cone sheaths of the interphotoreceptor matrix	17
Fig. (2.1):	Classical pathogenesis of rhegmatogenous retinal detachment	24
Fig. (4.1):	Diagram of Time-Domain optical coherence tomography	61
Fig. (4.2):	Diagram of Spectral-Domain optical coherence tomography	62
Fig. (6.1):	Male/Female representation percentage	73
Fig. (6.2):	Pseudophakic patients' percentage	75
Fig. (6.3):	Operation Type distribution	76
Fig. (6.4):	Mean of Sub-retinal fluid post-operatively	79
Fig. (6.5):	SRF Follow up OCT	79
Fig. (6.6):	Photoreceptor line disruption follow up	81
Fig. (6.7):	Macular cysts follow up	82

List of Tables

Table (1)	Physical attributes for commonly used Intraocular gases	4
<i>Table (3.1)</i>	Surgical Approaches for the Repair of Rhegmatogenous Retinal Detachment	39
<i>Table</i> (6.1)	Age Distribution	73
<i>Table</i> (6.2)	Sex Distribution	73
<i>Table (6.3)</i>	Patients' Refraction	73
<i>Table</i> (6.4)	Lens stat	75
<i>Table</i> (6.5)	Types of operations	75
<i>Table</i> (6.6)	Vision Conversion Table	76
<i>Table</i> (6.7)	Vision progression for all cases	77
<i>Table</i> (6.8)	Subretinal fluid Volume progression	80
<i>Table</i> (6.9)	Vision progression for group A	83
<i>Table (6.10)</i>	Vision progression for group B	84
<i>Table</i> (6.11)	Vision progression for group with Photoreceptor line disruption	85
<i>Table</i> (6.12)	Vision progression for cases with Macular cysts	86
<i>Table (6.13)</i>	Table (6.13): Vision progression for group C	87
<i>Table</i> (6.4)	Linear Correlation between vision prognosis and sub-retinal fluid height	89
<i>Table</i> (6.5)	Non Linear Correlation between vision prognosis and sub-retinal fluid height	90

Introduction

Retinal detachment often is a preventable cause of vision loss. It is defined as separation of the neurosensory retina (NSR) from the underlying pigment epithelium in association with accumulation of subretinal fluid. ¹

A retinal detachment occurs when the forces of adhesion between the neurosensory retina (NSR) and the retinal pigment epithelium RPE are overwhelmed. This can occur by different mechanisms. Regardless of the mechanism, all types of retinal detachment have one characteristic in common, the accumulation of subretinal fluid. ²

Despite the high level of anatomic success, visual results remain compromised mainly because of permanent functional damage once the macula becomes detached. ³

The Reattachment rate after retinal detachment surgery is quite high.. Although the retina is completely reattached, functional recovery cannot be accomplished completely. Although some studies have shown a relation between duration of macular detachment and visual acuity, others have not. ⁴

Visual recovery after treatment of retinal detachment varies from case to case despite apparent ophthalmoscopic retinal reattachment. Although many prognostic factors have been suggested in regard to postoperative visual acuity, the relation between the tomography of the reattached retina and the visual acuity have not been well studied. ⁵

Patients with macula-off rhegmatogenous retinal detachments (RRDs) can have poor visual recovery, specific color vision defects, or metamorphopsia postoperatively despite successful retinal reattachment. In these cases, subtle changes in the foveal structure, which may be causing visual disturbances, can be difficult to identify during standard clinical examinations such as slit-lamp biomicroscopy or binocular indirect ophthalmoscopy. ⁶

Wolfensberger and Gonver reported a possible association between incomplete visual recovery and the presence of residual subretinal fluid (SRF) postoperatively. ⁷

Optical coherence tomography is a noninvasive, patient- and operator-friendly technique that has the advantage of imaging and quantitatively analyzing retinal thickness, nerve fiber layer, and optic nerve structures with good reproducibility. ⁸

The advent of optical coherence tomography (OCT) offers the theoretical possibility of high-resolution measurements of both retinal thickness and the dimensions of the retinal component layers, especially the thickness of subfoveal fluid in detached fovea. Images are generated as a result of the interaction between a partially coherent beam of optical radiation and tissue components. The most important optical phenomena in OCT signal generation are the scatter, reflection, and absorption of incident light. In current biomedical applications, near infrared radiation is used almost exclusively as a source of illumination. ⁹

Optical coherence tomography (OCT) (Stratus OCT, Carl Zeiss Meditec, Inc., Dublin, CA) is a commercially available computer-assisted precision optical instrument that generates cross-sectional images (tomograms) of ocular structures with close to 10-µm axial resolution. ¹⁰

Spectral/Fourier domain detection represents a recent advance in OCT technology that enables imaging speeds of >25,000 axial scans per second, or ~50 times faster than time-domain detection. ¹¹

Ultrahigh-resolution (UHR) OCT, which provides an axial resolution of approximately 3 to 5 μ m compared with that of approximately 10 μ m with conventional Stratus OCT, facilitates improved visualization of the intra-retinal microstructures and identification of pathologic changes. ¹²

Spectral/Fourier domain OCT images more accurately represent true retinal topography than do time-domain OCT images. Because of the increased speed of image acquisition, motion artifacts are minimized, resulting in higher quality images and finer discrimination of intraretinal layers. ¹³

Improved resolution enhances visualization of the intraretinal structures, particularly at the level of the external limiting membrane (ELM) and photoreceptor inner segment/outer segment (IS/OS) junction, which may indicate the integrity of the photoreceptor layer. ¹⁴

Spectral or Fourier domain OCT is so named because the interference spectrum of echo time delays of light is measured by a spectrometer and high-speed charge-coupled device (CCD) camera. Because the interference spectrum is composed of oscillations whose frequencies are proportional to the echo time delay, axial scan measurements can be obtained by calculating the Fourier transform. (A Fourier transform is a mathematical operation that extracts the frequency content of a signal). ⁸

FD-OCT provides a rapid sweep of serial OCT B-scan images that detect subtle microstructural changes in the area of interest (Retinal pigment

epithelium-photoreceptor complex) and reconstruction of a 3-dimensional (3-D) view of the microstructures. ¹⁵

The gases most commonly used in ophthalmic surgery are air, sulfur hexafluoride (SF6), perfluoropropane (C3F8), perfluoroethane (C2F6) and perfluorobutane (C4F8). The gases mentioned differ in terms of how long they will remain in the eye and in their expansion capacity (table 1). ¹⁶

TABLE 1						
Physical attributes of commonly used intraocular gases						
Gas	Expansion behavior at a concentration of 100% (factor)	Concentration that is usually applied (%)	Number of days that intraocular gas remains in the eye			
Air	0		5 to 7			
SF ₆	2	20	10 to 14			
C_2F_6	3.5	16	30 to 35			
C_3F_8	4	12	55 to 65			

Aim of the work

This work will assess the postoperative sub-clinical features of the foveal microstructures using OCT in patients presented with retinal detachment with detached macula (macula-off). Visual acuity (VA) and macular changes as the height of subfoveal fluid (subretinal fluid thickness, SFT) are measured before and after retinal surgery. The correlation between postoperative VA and SFT over time will be explored, as one would expect increasing VA with decreasing SFT.

Anatomy and Physiology of the Retina and Subretinal Fluids

The fundus oculi is the part of the eye that is visible on ophthalmoscopy, including the retina and its vessels and the optic nerve head (or optic disc). The macula, 5-6 mm in diameter, lies between the temporal vascular arcades. At the macula's center lies the fovea, rich in cones and responsible for color vision and the highest visual acuity. In the far periphery, the ora serrata is the junction between the retina and the pars plana. ¹⁷

The retina consists of millions of cells packed together in a tightly knit network spread over the surface of the back of the eye. These cells can be divided into a three basic cell types, photoreceptor cells, neuronal cells, and glial cells.¹⁸

With the exception of the fovea, ora serrata, and optic disc, the neural retina is organized in layers, dictated by the direction of the müllerian glia, its organizational backbone. Essentially, there is the photoreceptor layer plus the bipolar and ganglion cell layer, which represent the outer first neuron and inner second neuron of the visual pathway. The müllerian glia elaborate the internal limiting membrane as its basement membrane and extend to the external limiting membrane, where it communicates with the apices of the RPE (Figure 1.1).¹⁹

The inner nuclear layer is home to the nuclei of the müllerian glia, the bipolar cells, and the horizontal and amacrine cells. The amacrine cells lie on the inside of the inner nuclear layer, and the horizontal cells lie on the outside. The

inner nuclear layer has plexiform layers on either side, which connect it to the outer photoreceptor layer and the (inner) ganglion cell layer. From this simple anatomical consideration, it follows that rods and cones synapse with bipolar and horizontal cells in the outer plexiform layer. As a result of the increased length of Henle's fibers, the junctional system (the middle limiting "membrane") is found in the inner third of the outer plexiform layer, which is the only truly plexiform portion of this layer. The bipolar cells and amacrine cells of the inner nuclear layer synapse with the dendrites of the ganglion cells in the inner plexiform layer. In embryogenesis, müllerian glia, along with their internal limiting membrane and orientation, antedate photoreceptor differentiation; this is analogous to the rest of the central nervous system, in which structural development precedes individual cell differentiation.¹⁹

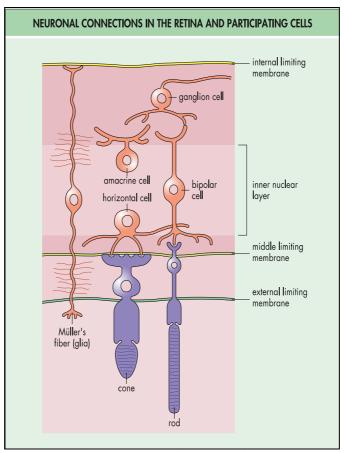


Fig. 1.1: Neuronal connections in the retina and participating cells. 19

The Macula

The umbo, foveola, fovea, parafovea, and perifovea together constitute the macula, or central area.²⁰ The central area can be differentiated from the extra-areal periphery by the ganglion cell layer. In the macula, the ganglion cell layer is several cells thick; however, in the extra-areal periphery, it is only one cell thick. The macular border coincides with the course of the major temporal arcades and has an approximate diameter of 5.5 mm, which comprises the diameter of the fovea (1.5 mm), twice the width of the parafovea $(2 \times 0.5 = 1 \text{ mm})$, and twice the width of the perifovea $(2 \times 1.5 = 3 \text{ mm})$.²¹

Fovea

The fovea represents an excavation in the retinal center and consists of a margin, a declivity, and a bottom (Figure 1.2, 1.3). The bottom corresponds to the foveola, the center of which is called the umbo. The umbo represents the precise center of the macula, the area of retina that results in the highest visual acuity. Usually, it is referred to as the center of the fovea or macula. Although both terms are commonly used clinically, neither is a precise anatomical designation.¹⁹

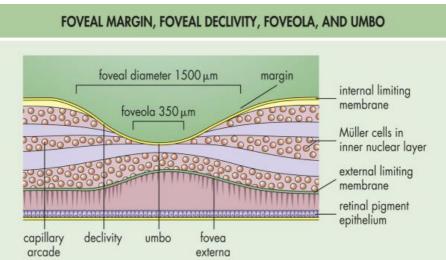


Fig. 1.2 Foveal margin, foveal declivity, foveola, and umbo 19