

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

SUEZ CANAL UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

PORT SAID, EGYPT

AN ARTIFICIAL NEURAL NETWORK BASED-SYSTEM FOR AUTOMATIC GAS RECOGNITION

BY AWAD MOHAMED MAHMOUD FARAG

B.Sc. Electrical Engineering

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering

Under Supervision of

Prof. Dr. Abd-Elhay Sallam

t. of Salla_

Dept. of Electrical & computer Eng.

Prof. Dr. Salah Elhawy

Labalisalu

Dept. of Electrical Eng.

Higher Technological Institute

Suez Canal University

Ramadan Tenth City, Egypt

Port Said, Egypt

1997

SUEZ CANAL UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

PORT SAID, EGYPT

AN ARTIFICIAL NEURAL NETWORK BASED-SYSTEM FOR AUTOMATIC GAS RECOGNITION

BY AWAD MOHAMED MAHMOUD FARAG

B.Sc. Electrical Engineering

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering

Approved by

Prof. Hany Sleem Girgis

Assuit university $\mathcal{H}SL$ - .

Prof. Salah Elhawy Ali

Higher Technological Institute

Ramadan Tenth City

Prof. Abd-Elhay Ahmed Sallam

Suez Canal University # 15 20

Dr. Reda hussien Sireg

Armed Forces Technical

Research Center

1997

ACKNOWLEDGMENT

At first and forever I thank ALLAH who help me greatly to achieve this work. I want to express my thanks to Prof. Dr. ABD-ELHAY SALLAM and Prof. Dr. SALAH ELHAWY for their efforts to support me. Great thanks to my parents. my wite, and all peoples who try to help me.

Finally I do not—know what I could write to properly express how much I thank *MR WAFIK HUSSIN* who is a way's supportive no matter the difficulties.

CONTENTS

List	of figures IV
List	of tables VI
Sum	mary VII
Cha	oter 1
Intro	oduction
1.1	Motivation 2
1)	Gas Sensors And Systems
1,3	Types Of Gas Sensors 5
131	Electrochemical Sensors 6
1.3.2	Infrared Detectors · Analyzers
1.3.3	Photo Ionization Detectors 9
1-3,4	Flame Ionization Detectors 9
1,3,5	Thermal Conductivity Sensors10
1.3.6	Gas Chromatography 10
1.3.7	Colorimetric Devices 12
1.4	Types of Monitoring14
1.4 1	Continuous Monitoring14
1.4.2	Portable Monitors
1.5	Installation And Maintenance 16
1.6	Gas Sensors Applications
1.7	Objectives Of The Thesis 20

Chapter 2 Neural Networks 2 1 22 2.3 2.4 Fundamentals Of Neural Networks 26 2412.4.2 The Artificial Neuron 27 243 Characteristics Of Artificial Neural Networks ٦ , 26 Practical Considerations ד נ 7 -7 ', X Types Of Artificial Neural Networks 181 Feed-Forward Neural Network 1: 2.8 1.1 Adaline And Madaline 11 Feed-Back Networks 282 29 Integrated Neural Network 49 2.10 Chapter 3 The System Physical Model 3.1 The Environment 5. 3.5 The Gas Sensor 53 3.2.1 Gas Detection Mechanism

3 2 4 Sensor Characteristic Specifications 57

3.3	The Analog To Digital Converter	9
3.4	The Used P.C.	53
Char	oter 4	
Desi	gn Of Neural Network	
For.	Automatic Gas Recognition	
4.1	Introduction	55
4.2	Data Selection And Evaluation	67
4.2.1	Subset Selection	69
4.2.2	Subsets Selections Of Gases Data	75
4.3	Neural Network Simulation	80
4.4	The Effect of The Temperature and Humidity	86
Cha	pter 5	
App	olication Of The K-L Transformation	
To	Gases Recognition	
5.1	Introduction	93
5.2	The K-L Transform Procedure	94
5.3	Gas Classification Using K-L Transform	96
5.4	Comparison Between The Neural Networks	
	And The K-L Transform Methods	99
Cha	apter 6	
	nclusions	
6.1	Conclusions	103
6.2	Suggestion For Future Work	
Ref	ferences	108

LIST OF FIGURES

1 . I	The Different Types Of Gas Sensors 6	
2.1	An Artificial Neuron Model	
2.2	A Simple Multi-Layer Network	
2.3	Different Activation Functions	
2.4	Training Techniques Used With Neural Network	
2.5	The Major Phases Of Classifier Development	7
2.6	The Adaline (Perceptron)	}
2.7	Single-Layer Feedback Network 48	}
3.1	Block Diagram Of Automatic Gas Recognition System 52	2
3.2	The TGS816 Detection Mechanism 55	5
3.3	The Sensor Structure And Configuration	5
3.4	The TGS816 Basic Measuring Circuit	6
3.5	The TGS816 Sensitivity Characteristics	8
3.6	The TGS816 Temperature And Humidity Characteristics 5	8
3.7	Block Diagram Representation Of A/D 6	60
4.1	Pattern Classification Approaches	57
4.2	Data Samples For Calm Air	71
4.3	Data Samples For Smoke	71
4.4	Data Samples For Alcohol	72
4.5	Data Samples For All Gases	72
4.6	FFT Component For Calm Air Data	79
4.7	FFT Component For Smoke Data	19
4.8	FFT Component For Alcohol Data	79
4.9	Number For Hidden Nodes Vs. The Training Time 8	32

4.10	Backpropagation Architecture For Automatic Gas		
	Recognition	82	
4.11	Flowchart Of The Backpropagation Algorithm	8 3	
4.12	The Sensor Resistance at Overlapped Region	92	
4.13	Neural Network For Covering The Effect of the		
	Temperature and Humidity	92	
5.1	Flowchart Of The K-L Transformation Method	95	
5.2	Flowchart Of The K-L Transform Test Procedure	97	

LIST OF TABLES

1.1	Sensors Capability Comparison	13
2.1	Comparison Of Conventional And Neural Network	
	Computation	25
3.1	I/O Addressing Setting	62
3.2	D-Type Connector Pin Assignment	62
4.1	Statistical Data Analysis Of The Studied Gases	73
4.2	The Magnitude Of The First 16 Component Of FIT	
	For Different Air Data Files	7.7
4.3	The Magnitude Of The First 16 Component Of FTT	
	For Different Smoke Data Files	78
4.4	The Magnitude Of The First 16 Component Of FTT	
	For Different Alcohol Data Files	78
4.5	The Results Of The Network Testing	85
4.6	Calm Air Data Calculated From Sensitivity curves	88
4.7	Smoke Data Calculated From Sensitivity curves	89
4.8	Alcohol Data Calculated From Sensitivity curves	89
5.1	Numerical Data Of The Distances Between The Target	
	Vectors Of The Different Classes And Gasses Outputs	
	Using The K-L Transform	98

SUMMARY

The economic realities of productivity, quality, and reliability for the industrial societies of the 21st century are placing major demands on existing manufacturing technologies. To meet both present and anticipated requirements, new and improved methods are needed. It is now recognized that these methods must be based on the powerful techniques employing computer-assisted systems. Full computer compatibility of all components and system must be aimed for.

With the widespread use of the artificial neural networks a complex problems such as image, voice, pattern, and signal processing are ideally done.

Application of the artificial neural network on gas recognition is investigated in this thesis, trying to offer more powerful, and accurate monitoring and recognition system for improving work safety and reducing the downtime

A complete automatic gas recognition system was designed. The system include electrochemical gas sensor, A / D card, and the digital computer, beside the necessary circuits for installation and interfacing. Software programs have been designed and implemented to perform the tasks of data collecting, and the neural network simulation, training, and testing. Also many software packages are used.