

Determination of U, Th, and REEs during Acid Treatment of Pure Egyptian Monazite by Relevant Techniques

Thesis Submitted By

Basma Talaat Mohamed Soliman B. SC. (Chemistry) 2008

To Chemistry Department Faculty of Science Ain Shams University

For The degree M.Sc. in Chemistry

As a partial fulfillments for requirements of Master of Science

(2014)

Approval Sheet

Name of candidate: Basma Talaat Mohamed Soliman

Degree: M.Sc. in Chemistry

Thesis Title: Determination of U, Th, and REEs during Acid Treatment of Pure Egyptian Monazite by Relevant Techniques.

This Thesis has been approved by:

Approval

1. Dr. Lilly Henain Khalil

Assistant Prof. of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University.

2. Prof. Dr. Laila Attia Guirguis

Prof. of ore processing - Nuclear Materials Authority.

3. Prof. Dr. Hisham Kadry Fouad

Prof. of analytical chemistry - Nuclear Materials Authority.

Head of Chemistry Department

ACKNOWLEDGMENT

First I do thank Allah the most merciful for his indefinite blessings.

I am indebted to **Dr. Lilly Henain Khalil**, Assistant Prof. of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University, for her help and supervising the practical work and for her guidance and support in writing the thesis.

I would like to express my deepest appreciation to **Prof. Dr. Laila Attia Guirguis,** Prof. of ore processing - Nuclear Materials Authority, for suggesting the point, contact supervision during all stages of the work, interpretation and revision of this thesis have been carried out under her sincere guidance.

Many thanks to **Prof. Dr. Hisham Kadry Fouad**, Prof. of analytical chemistry - Nuclear Materials Authority, for his help during the experimental work and assistance in the computer work.

LIST OF ABBREVIATIONS

IR Infrared

spectroscopy

AAS Atomic absorption

spectrometer

XRD X- ray diffraction

MIBK Methyl isobutyl

ketone

DEHPA Di ethyl hexyl

phosphoric acid

SEM Scanning electron

microscope

HCl Hydrochloric acid

HNO₃ Nitric acid

BSE Back scattered electron

CONTENTS

	ABSTRACT	Page I
	SUMMARY	IV
	CHAPTER 1	
1	Introduction and Literature Survey	1
1.1	Occurrence and Distribution of Egyptian Black Sand Deposits	2
1.2	Mineralogical Compositions of Egyptian Black Sand Deposits	2
1.2.1	Economic Minerals	2
1.2.2	Gangue Minerals	2
1.2.3	Colorless Silicates	3
1.2.4	Trace Minerals	3
1.3	Characteristics and Chemical Compositions of the Studied monazite	3
1.3.1	Monazite	3
1.4	Breakdown of Monazite for Industrial Use	3
1.4.1	Alkali Breakdown of Monazite	4
1.4.2	Calcium Chloride / Calcium Carbonate Breakdown of Monazite	4
1.4.3	Sodium Carbonate Breakdown of Monazite	5

1.4.4	Chlorination of Monazite	5
1.4.5	Sulphuric Acid Breakdown of Monazite	5
1.5	Separation of uranium and thorium from Egyptian monazite for chemical analysis	6
1.5.1	Precipitation of Thorium	12
1.5.2	Separation and Precipitation of Rare Earth Elements for Chemical Analysis	14
1.6	Spectrophotometric Determination of Thorium in Presence of Rare Earth Elements and Uranium	19
1.7	Spectrophotometric Determination of Rare Earth Elements in Presence of Uranium and Thorium	21
1.8	The Use of Statistical Process Control (SPC) for Assuring Products Qualities	22
	CHAPTER 2	
2	EXPERIMENTAL	23
2.1	Chemical Analysis	23
2.1.1	Chemicals and Reagents	23
2.1.2	Preparation of the Reagents	23
2.1.3	Instruments	26
2.1.4	Wet Chemical Method for Analyses	28
2.1.5	Instrumental Methods of Chemical Analyses	28
2.1.5.1	Spectrophotometry	28
2.1.5.2	Atomic Absorbance Spectrophotometry	30

2.1.5.3	Flame Photometry	30	
2.2	Breakdown and processing of Monazite	30	
2.3	Leaching process	30	
2.3.1	Leaching of monazite (uranium, thorium and REEs)	31	
2.4	General solvent extraction process	31	
2.5	Separation of phosphoric acid from leach liquor of monazite	31	
2.6	Solvent extraction of uranium from monazite sulphuric leach liquor	32	
2.7	Extraction of uranium from impurities of phosphoric acid	32	
2.8	Stripping (Re-extraction)	32	
2.9	Extraction of thorium from monazite leach liquor	33	
2.10	Determination of rare earth elements in monazite	33	
2.10.1	Dissolution of mixed rare earth oxide	33	
2.10.2	Determination of cerium (IV)	33	
2.10.3	Separation and precipitation of europium	34	
CHAPTER 3			
3.	RESULT AND DISSCUSSION	38	
3.1	Extraction of uranium from monazite	38	
3.1.1	Effect of concentration of solvent on extraction of uranium	38	
3.1.2	Effect of different diluents on the extraction process	38	

3.1.3	Effect of Aqueous/Organic phase ratio on extraction process	39
3.1.4	Effect of mixing time on extraction process	39
3.1.5	Effect of settling time on extraction process	39
3.1.6	Effect of temperature and calculation of activation energy on extraction process	39
3.1.7	Extraction Isotherm and Construction of McCabe-Thiele diagram for the extraction process.	40
3.1.8	Stripping Process	41
3.1.9	Effect of organic / aqueous phase ratio on the stripping Process	41
3.1.10	Effect of mixing time on stripping process	41
3.1.11	Effect of different concentrations of stripping agent on stripping process	42
3.1.12	Effect of settling time on stripping process	42
3.1.13	Effect of temperature on stripping process	42
3.1.14	Equilibrium line and construction of McCabe-Thiele diagram for the stripping process	42
3.1.15	Precipitation of uranium from the strip solution	43
3.1.16	IR Spectroscopy	43
3.2	Extraction of thorium from monazite sulphuric leach liquor	44
3.2.1	Factors affecting the extraction of thorium	44
3.2.1.1	Effect of aqueous/organic phase ratio on the extraction	44
3.2.1.2	Effect of temperature on extraction	44
3.2.1.3	Effect of concentration of solvent on extraction process	45

3.2.1.4	Effect of contact time on the extraction process	45
3.2.1.5	Effect of settling time on the extraction process	45
3.2.1.6	Effect of different diluents on extraction process	45
3.2.1.7	Extraction Isotherm and Construction of McCabe-Thiele diagram for the extraction process.	46
3.2.2	Stripping Process	46
3.2.2.1	Effect of organic/aqueous phase ratio on stripping process	46
3.2.2.2	Effect of different stripping reagents	47
3.2.2.3	Effect of different concentrations of stripping agent on stripping process	47
3.2.2.4	Effect of contact time on stripping process	47
3.2.2.5	Effect of temperature on stripping process	47
3.2.2.6	Effect of settling time on stripping process	48
3.2.2.7	Equilibrium line and construction of McCabe-Thiele diagram for the stripping process	48
3.3	Determination of Total Rare Earth Elements in monazite	49
3.3.1	Dissolution of mixed rare earth oxide	49
3.3.2	Analytical methods for determination of cerium (IV) and other rare earth elements	50
3.3.3	Cerium (IV) extraction from rare earth elements from monazite 97%	50
3.3.3.1	Optimum conditions for extraction of cerium	50
3.3.3.2	Optimum conditions for stripping process of cerium IV from loaded TBP	51

3.3.3.3	Recovery and analysis of cerium product	51
3.3.4	Separation of Europium from Rare Earth Elements Derived from monazite	51
	Conclusions	91
	REFRENCES	93
	ARABIC SUMMARY	

LIST OF TABLES

		page
	CHAPTER 2	
2	EXPERIMENTAL	
Table 2.1	Chemical and reagents used in present work	35
Table 2.2	Instrumental parameters of atomic absorbance and flame emission measurements of trace elements	37
	CHAPTER 3	
3	RESULT &DISCUSSIONS	
Table (3.1)	Complete chemical analyses black sand monazite grade 97%	54
Table (3.2)	The X-ray diffraction pattern of monazite 97% which matches with ASTM card No.10-0309	55
Table (3.3)	Effect of concentration of solvent on extraction of uranium from monazite	56
Γable (3.4):	Effect of different diluents on U extraction process	56
Table (3.5)	Effect of aqueous / organic phase ratio on U extraction process	56
Table (3.6)	Effect of contact time on U extraction process	57
Table (3.7)	Effect of settling time on U extraction process	57
Table (3.8)	Effect of temperature on U extraction process	57
Table (3.9)	Concentration of U in the organic and aqueous phases.	58

Table (3.10)	Effect of organic/aqueous phase ratio on U stripping process	58
Table (3.11)	Effect of contact time on U stripping process	59
Table (3.12)	Effect of different concentrations of stripping agent on stripping process	59
Table (3.13)	Effect of settling time on U stripping process	59
Table (3.14)	Effect of temperature on U stripping process	60
Table (3.15)	Concentration of uranium in organic and aqueous phases	60
Table (3.16)	Infrared absorption data of uranyl peroxide sample prepared	61
Table (3.17)	Effect of aqueous/organic phase ratio on extraction of thorium	62
Table (3.18)	Effect of temperature on Th extraction process	62
Table (3.19)	Effect of concentration of solvent on Th extraction process	62
Table (3.20)	Effect of contact time on Th extraction process	63
Table (3.21)	Effect of settling time on Th extraction process	63
Table (3.22)	Effect of different diluents on Th extraction process	63
Table (3.23)	Concentration of thorium in organic and aqueous phases	64
Table (3.24)	Effect of organic / aqueous phase ratio on Th stripping process	64
Table (3.25)	Effect of different stripping reagent on Th stripping process	65

Table (3.26)	Effect of different concentrations of Th stripping agent on stripping process	65
Table (3.27)	Effect of contact time on Th stripping process	65
Table (3.28)	Effect of temperature on Th stripping process	66
Table (3.29)	Effect of settling time on Th stripping process	66
Table (3.30)	concentration of Th in organic and aqueous phases	67

LIST OF FIGURES

		Page
	CHAPTER 3	
3	RESULTS AND DISCUSSIONS	
Fig. (3.1)	Effect of concentration of solvent on uranium extraction	68
Fig. (3.2)	Effect of different diluents on uranium extraction	68
Fig. (3.3)	Effect of A/O phase ratio on U extraction process	69
Fig. (3.4)	Effect of contact time on U extraction process	69
Fig. (3.5)	Effect of settling time on U extraction process	70
Fig. (3.6)	Effect of temperature on U extraction process	70
Fig. (3.7)	Mc Cabe Thiele diagram for the U extraction process.	71
Fig. (3.8)	Effect of organic / aqueous phase ratio on the U stripping process	71
Fig. (3.9)	Effect of mixing time on U stripping process	72
Fig .(3.10)	Effect HCl concentrations on U stripping process	72
Fig. (3.11)	Effect of settling time on U Stripping process	73
Fig. (3.12)	Effect of temperature on U stripping process	73
Fig. (3.13)	Mc Cabe Thiele diagram for uranium stripping process	74
Fig. (3.14)	IR spectrum of uranyl peroxide	74
Fig .(3.15)	Technological flow sheet for the suggested method of uranium extaction as byproduct of phosphoric acid	75
Fig. (3.16)	Effect of aqueous/organic phase ratio on Th extraction process	76
Fig. (3.17)	Effect of temperature on Th extraction process	76

Fig. (3.18)	Effect of concentration of solvent on Th extraction process	77
Fig. (3.19)	Effect of contact time on Th extraction process	77
Fig (3.20)	Effect of settling time on Th extraction process	78
Fig (3.21)	Effect of different diluents on Th extraction process	78
Fig.(3.22)	Mc Cabe Thiele diagram for the Th extraction process	79
Fig.(3.23)	Effect of organic/aqueous phase ratio on Th stripping process	80
Fig .(3.24)	Effect of different stripping reagents on Th stripping process	80
Fig.(3.25)	Effect of different concentrations of stripping agent on Th stripping process	81
Fig .(3.26)	Effect of contact time on Th stripping process	81
Fig .(3.27)	Effect of temperature on Th stripping process	82
Fig. (3.28)	Effect of settling time on Th stripping process	82
Fig. (3.29)	Mc Cabe Thiele diagram for the Th stripping process	83
Fig. (3.30)	Technological flow sheet for the suggested method of thorium extaction	84
Fig .(3.31)	BSE (Back scattered electron) image of cerium dioxide product via scanning electron microscope	85
Fig. (3.32)	A proposed flow sheet illustrated the extraction and precipitation of cerium	86
Fig .(3.33)	A schematic diagram for employed zinc column reduction precipitation apparatus	87
Fig. (3.34)	A proposed flow sheet for the suggested europium separation process via zinc column method	88