THE ROLE OF TWO DIMENSIONAL VERSUS THREE DIMENSIONAL ULTRASONOGRAPHY IN ASSESSING PELVIC MASSES IN PERIMENOPAUSAL WOMEN CORRELATED WITH PATHOLOGIC ANALYSIS

Thesis
submitted for fulfilment of
Master degree in Obstetrics and Gynecology

Presented by

Fady Reda KAMEL

Resident of obstetrics and gynecology El Galaa Teaching Hospital (M.B.B.Ch.)

Under supervision of

Prof.Dr. Hany Mohamed Ahmed El Didy

Professor of obstetrics and gynecology Faculty of Medicine-Cairo University

Dr. Eman Abd ELmonem ELKattan

Lecturer of obstetrics and gynecology Faculty of Medicine-Cairo University

Faculty of medicine Cairo University 2009

Acknowledgment

First of all, I wish to express my sincere thanks to God for his care and generosity throughout of my life.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Hany Mohamed Ahmed El Didy,** Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his gentle guidance, and continuous encouragement for me to complete this work.

I would like to express my great thanks to **Dr. Imam Abd Elmonem El Kattan,** lecturer of Obstetrics and Gynecology, faculty of medicine, Cairo University for her great support throughout the whole work as well for the tremendous effort she has done in the meticulous revision of this work.

At last, I am indebted for my family and friends for their great support, patience and continuous encouragement.

Fady Reda Kamel

Abstract

Medical ultrasound has experienced enormous technological progress during the last decades. 3D-US represents a new technique of imaging owing to its ability to register all three imaging planes simultaneously to reconstruct new planes which are otherwise not visible as well as to visualize surfaces three-dimensionally. Characterization of surface features infiltration and precise depiction of volume are all possible. *The* aim of the present study was to evaluate the role of 3D in diagnosis of uterine and adnexal lesions and its superiority over 2D-US, correlated with pathological analysis as a gold standard for the final diagnosis. *This* study included a random sample of 50 patients with perimenopausal pelvic mass accidentally discovered during routine ultrasound examination or symptomatizing attending the outpatient gynecologic clinic, aging between 40 and 56 years old. In this study, 37 out of 38 patients with fibroids has been correctly diagnosed by 3D-US whereas 2D-US detected 35of them (sensitivity 97.3% vs. 92.1%, and specificity 97.5% vs. 99.9% respectively).3D-US was able to diagnose 5 out of 6 patients polyps, whereas 2D-US diagnosed 2 of them (sensitivity 83.3%, vs. 33.3%, respectively and the same specificity 99.9% for both).3D-US was able to diagnose 11 of 16 patients with adenomyosis whereas 2D-US diagnosed 5 of them (sensitivity 68.75%, vs. 31.2%, respectively and the same specificity 99.9% for both).3D-US was able to diagnose 13 of 16 patients with ovarian cysts), whereas 2D-US diagnosed 4 of 16 ovarian cysts (sensitivity 81.2% vs. 25% respectively and the same specificity 99.9% for both). *In conclusion*, the present study confirms the superiority of 3D-US over 2D-US in diagnosing pelvic masses. 3D U/S can be used to supplement 2D assessment. Further large-scale studies are needed to refine and test the scores used to differentiate benign from malignant lesions.

Keywords:

Perimenopause, two-dimensional ultrasound, three-dimensional ultrasound, pelvic masses.

Contents

	Page
LIST OF FIGURES	IV
LIST OF TABLES	VI
LIST OF ABBREVIATIONS	VII
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	
❖ Perimenopausal pelvic masses	5
Ultrasound history and techniques	36
❖ Role of 2D ultrasound in the diagnosis of pelvic masse	s 50
❖ Role of 3D ultrasound in the diagnosis of pelvic masse	s 72
PATIENTS AND METHODS	90
RESULTS AND DISCUSSION	93
CONCLUSION	113
SUMMARY	114
REFERENCES	118
ARABIC SUMMARY	

List of figures

Fig.N°	Figure title	Page N°
Fig.1	Possible sites of uterine leiomyoma	12
Fig.2	Sagittal sonographic view of a uterus with a submucous	1.4
	leiomyoma	14
Fig.3	Pathology of adenomyosis	15
	Transvaginal, coronal ultrasound shows an indistinct	
Fig.4	junctional zone between the endometrium and the	17
	myometrium	
Fig.5	Gross picture of endometrial carcinoma	20
Fig.6	Microscopic picture of endometrial carcinoma	20
Fig.7	Coexisting endometrial polyp, endometrial hyperplasia, and endometrial carcinoma	22
Fig.8	Haemorrhagic corpus luteum cyst with hemolysis at periphery	27
Fig.9	Haemorrhagic corpus luteum cyst with a retracted blood clot	27
Fig.10	Macroscopic picture of an ovarian teratoma	29
Fig.11	Microscopic view of an ovarian teratoma	29
	Endovaginal sonogram of an ovarian teratoma	
Fig.12	giving a "tip-of-the-iceberg" appearance	31
Fig.13	Ultrasonography of a tuboovarian abcess	35
Fig.14	A-Mode Scan of a Tumor	38
Fig.15	M-Mode Scan of a Beating Heart	39
Fig.16	B-Mode Scan of a Cyst	39
Fig.17	C-Mode Scan of a Fetus	40
Fig.18	Some forms of scanning movements	44
Fig.19	Voxel; the 3D picture element	45
Fig.20	The three orthogonal planes	47
Fig.21	Niche mode	48
Fig.22	Surface mode of fetal face and hand	49
Fig.23	Maximum mode of 3D Ultrasound	49
Fig.24	Minimum mode of 3D Ultrasound	49
Fig.25	X-Ray mode of 3D Ultrasound	49
Fig.26	Surface (contour) mode of 3D Ultrasound	49
Fig.27	Wiremesh mode of 3D Ultrasound	49
Fig.28	Ultrasonography of a benign cystic teratoma	52
Fig.29	Ultrasonography of an endometrioma	53
Fig.30	Ultrasonography of a clear ovarian cyst	55
Fig.31	Ultrasonography of a dominant follicle	56
Fig.32	Ultrasonography of a multiloculated ovarian cyst	56
Fig.33	Ultrasonography of a solid ovarian tumor	57
Fig.34	Color Doppler revealing a central vascular flow within a	58
	granulosa cell tumor	50
Fig.35	Ovarian malignancy containing two papillary excrescences	59 59
Fig.36	Echogenic foci on the periphery of a normal ovary	JY
Fig.37	Solid component within an ovarian malignancy with internal vascular flow	59

Fig.38	a hemorrhagic cyst with a dependent "ground-glass" component	60
Fig.39	Ultrasonography of a hydrosalpinx	63
Fig.40	Ultrasonography of a peritoneal cyst	65
Fig.41	Transvaginal ultrasonography of a paraovarian cyst	67
Fig.42	Ultrasonography of a luteal hemorrhagic cysts	68
Fig.43	Saline Infusion Sonography of a submucous fibroid	69
Fig.44	Endometrial volume calculation by using the VOCAL software after three-dimensional ultrasound	74
Fig.45	3D imaging of the endometrial polyp during Sonohysterography	76
Fig.46	Adenomyosis by 3D Ultrasound	79
Fig.47	Fundal submucous fibroid by 3D Ultrasound	80
Fig.48	Color Doppler blood stream 3D image" revealing irregular, randomly distributed blood vessels of a uterine leiomyosarcoma	81
Fig.49	Color Doppler blood stream 3D image" revealing irregular, randomly distributed blood vessels of a uterine leiomyosarcoma	81
Fig.50	Ovarian dermoid cyst by 3D ultrasound	85
Fig.51	Hydrosalpinx by 3D ultrasound	86

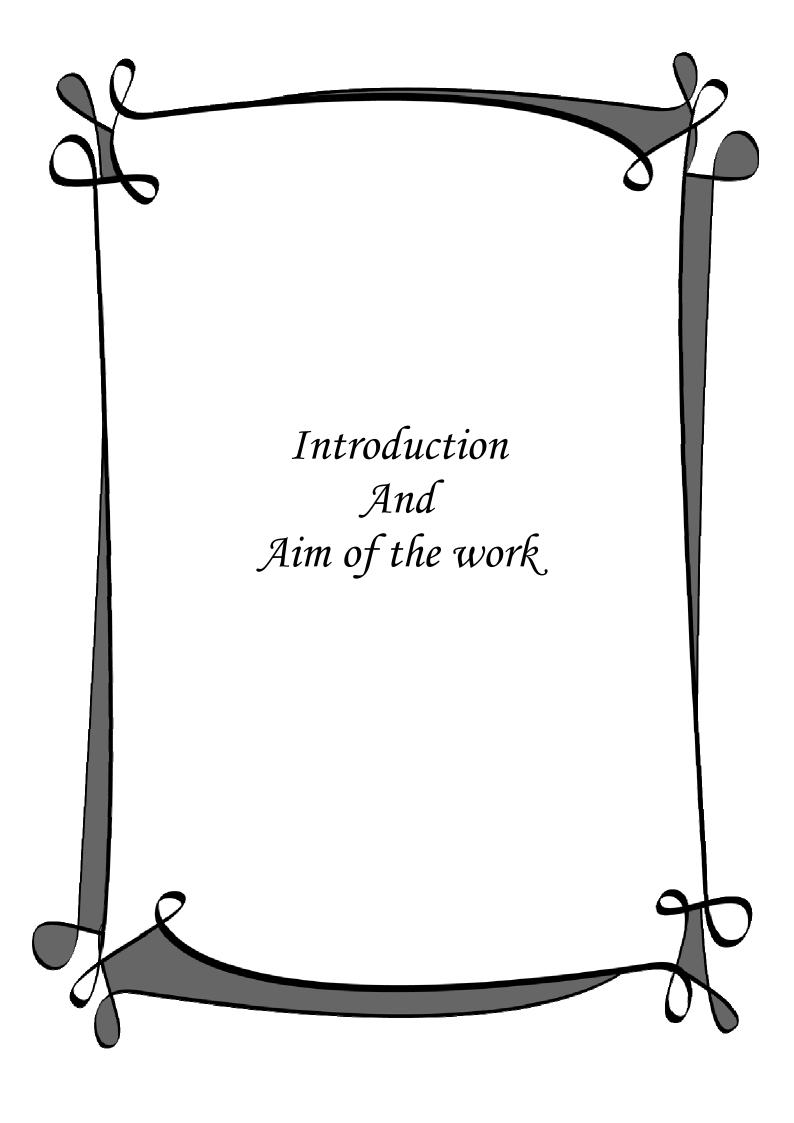

List of tables

Table N°	Table title	Page N°
1	Guidelines for referral of newly diagnosed pelvic	25
	mass to gynecologic oncologist	23
2	possible causes of solid ovarian tumors	58
3	Morphologic scoring schema for evaluating	61
	adnexal masses	01
4	percentage of pathologies diagnosed by 2D-	94
	ultrasound) 1
5	percentage of pathologies diagnosed by 3D-	95
	ultrasound	73
	Statistical parameters of correlation and	
6	significance of 2D and 3D ultrasound diagnostic	96
	tool on pelvic mass diagnosis	
7	Statistical values of 2D-ultrasound on fibroid	97
-	diagnosis	
8	Value of 2D-ultrasound on adenomyosis diagnosis	98
9	Value of 2D-ultrasound on uterine polyp diagnosis	98
10	Value of 2D-ultrasound on ovarian cyst diagnosis	99
11	Statistical values of 2D-ultrasound in diagnosing	99
	different pelvic masses	
12	Value of 3D-ultrasound on fibroid diagnosis	100
13	Value of 3D-ultrasound on adenomyosis diagnosis	100
14	Value of 3D-ultrasound on uterine polyp diagnosis	101
15	Value of 3D-ultrasound on ovarian cyst diagnosis	102
16	Statistical values of 3D-ultrasound on different	102
	pelvic masses diagnosis	102
17	Perimenopausal women with pelvic mass	103

List of abbreviations

Ob/Gyn.	Obstetrics and Gynecology
2D US	Two-dimensional Ultrasound
3DHS	Three-dimensional hysterosonography
3D-HyCoSy	Three-dimensional hysterosalpingo contrast sonography
3DPD	Three-dimensional power doppler
3D US	Three-dimensional Ultrasound
4D US	Four-dimensional Ultrasound
ACR-	American college of radiology-breast imaging reporting & data
BIRADS	system
AFP	Alpha fetoprotein
ANOVA	Analysis of variance
B-mode	Brightness mode
BRCA-1	Breast cancer gene-1
BRCA-2	Breast cancer gene-2
CA	Cancer Antigen
CAD	Computer aided detection
CI	Confidence interval
CT	Computed tomography
D & C	Dilatation & curettage
DCIS	Ductal carcinoma in situ
DES	Diethylstilbestrol
DGC	Depth gain compensation
E2	Estradiol
EOC	Epithelial ovarian cancer
EORTC	European organization for research and treatment of cancer
EP	Extrauterine pregnancy
ET	Endometrial thickness
FDG	Fluoro-Dioxyglucose
FI	Flow index
FMP	Final menstrual period
FSH	Follicular Stimulating hormone
GI	Gastro-intestinal
hCG	Human chorionic gonadotropins
HRT/HT	Hormonal replacement therapy
HSG	Hysterosalpingography
HSSG	Hystero-sono-salpingography
HPV	Human papilloma virus
IVD	Intra-Vascular Doppler
KHz	Kilo-hertz
LH	Luteinizing Hormone
MD	Medical doctor
MHz	Mega-hertz
MI	Myometrial invasion
MRI	Magnetic resonance imaging
	0

MWMHP	Melbourne Women's Midlife Health Project
NPV	Negative predictive value
P	probability
PDU	Power doppler ultrasound
PET	Positron emission tomography
PI	Pulsatility index
PID	Pelvic inflammatory disease
PPV	Positive predictive value
r	Pearson correlation
RI	Resistive index
ROC	Receiver operating curve
RRs	Relative risks
RT-PCR	Reverse transcriptase-polymerase chain reaction
RVF	Retro-verted flexed
SCSH	Saline contrast sonohysterography
SIS	Saline-infusion sonography
SLN	Sentinel lymph node
SMWHS	Seattle Midlife Women's Health Study
SONAR	Sound navigation and ranging
STRAW	Stages of Reproductive Aging Workshop
TAS	Transabdominal sonography
TGC	Time gain compensation
TOA	Tubo-ovarian abscess
TVCDS	Transvaginal color doppler sonography
TVU, TVUS	Transvaginal ultrasound
TVS	Transvaginal sonography
US	Ultrasound
USG	Ultrasonography
VAIN	Vaginal intraepithelial neoplasia
VFI	Vascularization flow index
VI	Vascularity index
VOCAL	Virtual organ computer-aided analysis
VS	Versus
WHO	World Health Organization

Introduction

Pelvic masses develop commonly in women of all ages and states of health and may involve the reproductive organs or non gynecologic structures. They may be identified in asymptomatic women during routine pelvic examination or may cause symptoms. Typical complaints include pain, pressure sensations, dysmenorrhea, or abnormal uterine bleeding. (Barney et al, 2008).

Combining a patient's history and examination with ultrasound allows better diagnosis and thus any need for surgical intervention. (Shwayder, 2008)

Ultrasound is the imaging modality of choice for the female pelvis. It is widely available, has broad acceptance by patients as a "familiar test," and is relatively inexpensive. High-resolution imaging of transvaginal ultrasound provides high diagnostic accuracy for pelvic pathology. When evaluating an adnexal mass on ultrasound, the diagnostic challenges that may arise include accurately localizing the mass, determining its origin, and, when complex, whether it is definitively benign or malignant. (Hubert and Bergin, 2008).

Morphology is the foundation for assessment of adnexal masses. New developments with 3-D ultrasound, Doppler, vascular quantification, and use of contrast agents may further enhance the discrimination of malignant and benign tumors, which is critical in operative management. (Shwayder, 2008)

A number of genital tract disorders cause pelvic masses in adult women. Uterine enlargement due to pregnancy, functional ovarian cysts, and leiomyomas are among the most common. Endometrioma, mature

cystic teratoma, acute or chronic tubo-ovarian abscess, and ectopic pregnancies are other frequent causes.

With the cessation of ovulation and reproductive function, the causes of pelvic mass also change. Simple ovarian cysts and leiomyomas are still a common source. Although atrophy of leiomyomas typically follows menopause, uterine enlargement can still be noted in many women. Importantly, malignancy is a more frequent cause of pelvic masses in this demographic group. Uterine tumors, including adenocarcinoma and sarcoma, have associated uterine enlargement. In addition, ovarian cancer accounts for nearly 4 percent of cancers among all women. (Barnholtz-Sloan et al, 2003).

A morphologic scoring schema has been described for evaluating adnexal masses. Masses with a morphologic score ≥ 9 were more associated with malignant adnexal masses with 100% sensitivity but 83% specificity. Scores < 9 were associated with benign lesions, with no falsenegative results (*Shwayder*; 2008). Other authors, using morphology alone, found the negative predictive value of ultrasound to be more than 90% (*Outwater et al*, 2001)

Leiomyomas, benign uterine neoplasms, are the most common tumor of the female genital tract. Their classification is based on their location within the uterine corpus as either intramural, submucosal, or subserosal. Most women are asymptomatic; however, the most common symptom is bleeding. Transvaginal ultrasound has been shown to be as efficient as MRI in the detection of the presence of myomas (*Erik et al, 2002*)

Adenomyosis is characterized by the endometrial invasion of the myometrium. In addition, there is a generalized hypertrophy and hyperplasia of the surrounding muscular elements of the myometrium.

Transvaginal ultrasound has been reported to diagnosis adenomyosis with a sensitivity, specificity, positive and negative predictive value of 87%, 98%, 74.1% and 98.6%, respectively (*Bazot et al, 2001*)

Endometrial polyps typically present with postmenopausal bleeding, particularly in patients on tamoxifen therapy. Transvaginal ultrasound has high sensitivity and specificity for endometrial polyps. (*Grasel et al*; 2000)

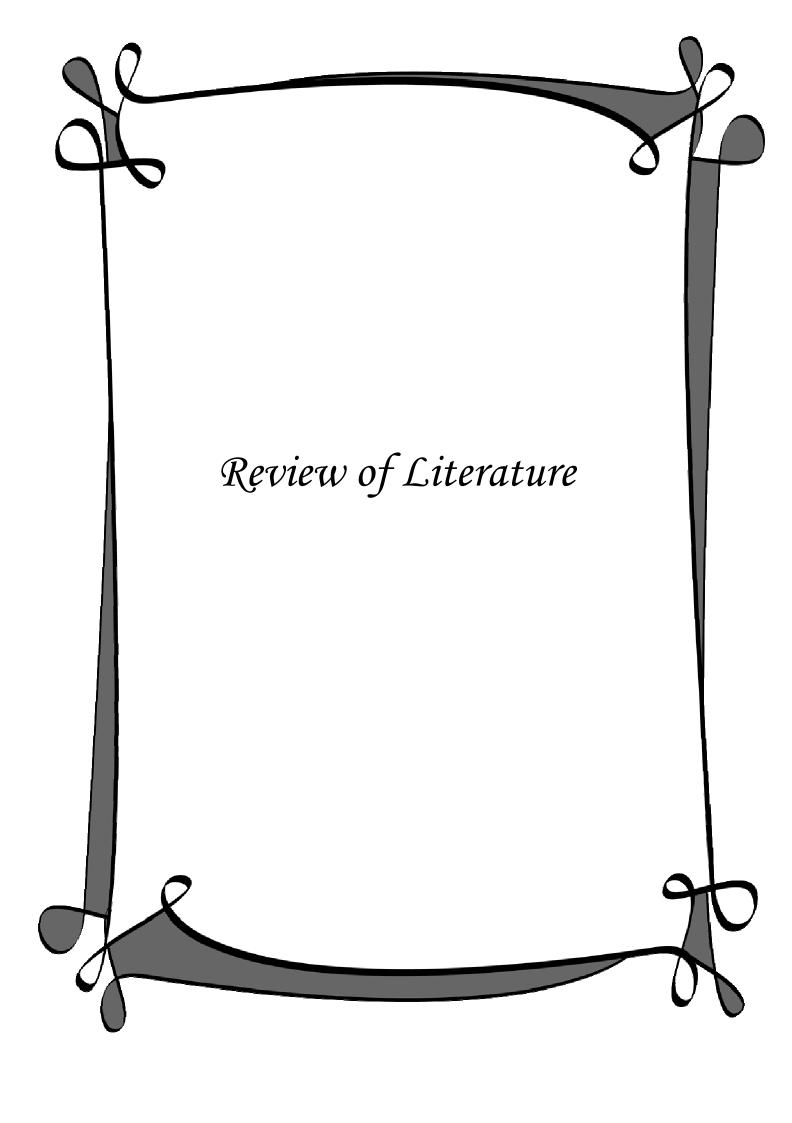
Endometrial carcinoma, the fourth most common cancer in women and the most common gynecological malignancy, using endovaginal ultrasound, the sensitivity of detecting myometrial invasion of > 50% was 79%. However, the positive predictive value was 100%, in all cases when ultrasound suggested myometrial invasion of > 50%. (Karlsson et al 1992)

Regarding the diagnosis of ovarian malignancies, researchers conclude that preoperative ultrasound examinations had a sensitivity of 40% and a specificity of 100% when carried out by routine operators, but had a sensitivity of 88% and a specificity of 96% when carried out by expert operators (*Yazbek*, 2008).

Transvaginal ultrasound often is helpful in diagnosing tubo-ovarian abscess, which may complicate PID. The addition of color Doppler flow to the standard black-and-white transvaginal ultrasound has been used to assess vascularity and pulsatility indices. In one study, the power Doppler identified all laparoscopically confirmed cases of acute PID in the study group, and thus was found to be 100 % sensitive for this diagnosis (*Molander et al;2001*).

Ovarian volume determined by 3-D ultrasound is more reliable than that obtained by 2-D ultrasound. Reconstruction and rendering can elucidate inner wall structure, presence or absence of complete septa, and can differentiate a fallopian tube from the ovary (*Alcazar et al; 2003a*).

Three-dimensional ultrasound (3D US) is a new imaging modality, which is being introduced into clinical practice. Although this technique is unlikely to replace two-dimensional ultrasound, it is being increasingly used. It has been reported that 3D US is a high reproducible technique


which has many applications in the field of Gynecology, as supported by a steady increase in the number of papers published in this area in the last few years. These applications include: imaging of the uterus, uterine cavity, adnexa and pelvic floor, as well as very interesting applications using three dimensional power-Doppler ultrasound. (*Alcazar*, 2005).

Studies comparing 3-D with 2-D ultrasound in assessing ovarian masses are controversial. Initial studies found 3-D ultrasound more sensitive than 2-D ultrasound. (*Kurjak et al; 2001*). Others found no statistical difference between 3-D and 2-D ultrasound. (*Alcazar et al; 2003a*).

Aim of the work

The aim of this study is to explore the diagnostic value of 3D ultrasonographic examination in perimenopausal patients; in terms of accurate detection of uterine and adnexal lesions compared to conventional ultrasonographic methods.

The final histopathological diagnosis based on surgically removed or biopsy specimens will be taken as the gold standard for comparison of the yield and accuracy of 3D ultrasonography to the conventional 2D ultrasonography.

