Urodynamic Evaluation of Continent Cutaneous Urinary Stoma

Thesis

Submitted for Fulfillment of MD Degree in Urology

By

Rehab Helmy Murad M.B., B.Ch., M. Sc Urology

Under Supervision of

Prof. Dr. / Shereen Ibrahim Ragy

Professor of Urology
Faculty of Medicine, Ain Shams University

Prof. Dr. / Hassan Sayed Shaker

Professor of Urology Faculty of Medicine, Ain Shams University

Dr./ Mohamed Mohamed Yassin

Lecturer of Urology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2014

تقييم ديناميكية التبول في تحويل مجرى البول بفتحة تحكمية على الجلد

دراسة توطئة للحصول على درجة الدكتوراه في جراحة المسالك البولية

مقدمة من

الطبيبة /رحاب حلمى محمد مراد ماجستير جراحة المسالك البولية

تحت إشراف

الأستاذ الدكتور/ شيرين ابراهيم راجى أستاذ جراحة المسالك البولية كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ حسن سيد شاكر أستاذ جراحة المسالك البولية كلية الطب - جامعة عين شمس

الدكتور/ محمد محمد يس مدرس جراحة المسالك البولية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٤

First of All Thanks To ALLAH

I wish to express my deep appreciation and gratitude to **Prof. Dr. Shereen Ibrahim Ragy,** Professor of Urology, Faculty of Medicine, Ain Shams University, for his academic supervision, guidance, constant encouragement and valuable advice, which was essential for the completion of this study.

My sincere gratitude to **Prof. Dr. Hassan Seid Shaker,** Professor of Urology, Faculty of Medicine, Ain Shams
University, for his unforgettable help, continuous inspiration,
generosity in giving his time, effort and advice and his
continuous assistance during the course of this research

I'm greatly indebted to **Dr. Mohamed Yassin** Lecturer of Urology, Faculty of Medicine, Ain Shams University for his kind help, guidance and follow up throughout the whole work.

Last but by no means least, I would like to express my endless gratitude to my dear patients and their parents without whose help and cooperation this work would have never been accomplished. May Allah grant them good health.

Rehab Helmy.

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	4
Review of Literature	
Surgical anatomy of intestinal segment used for diversion	
 History and types of continent cutaneous divers 	ion15
• Indication of continent cutaneous urinary diversi	ion28
Contraindication	34
• Functional results and outcome of CCUD	36
Basic characters of continent urinary diversion	38
Classifications of continent cutaneous urinary di	version40
Metabolic complications of CCUD	47
Urodynamics in substitued bladder	70
Patients and methods	78
Results	85
Discussion	97
Summary and conclusion	114
References	116
Arabia Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Continent urinary reservoirs	27
Table (2):	Comparison between complications of Monti & Mitrofanoff techniques	69
Table (3):	Types of continent cutaneous urinary diversion	78
Table (4):	Indications of continent cutaneous urinary diversion	79
Table (5):	Distribution of the studied cases as regard age & sex	85
Table (6):	Distribution of the studied cases as regard frequency of incontinence	86
Table (7):	Distribution of the studied cases as regard frequency of complications	87
Table (8):	Incidence of positive urinary culture	89
Table (9):	Bladder capacity according to continence status	91
Table (10):	Intraluminal pressure in contracted reservoir	92
Table (11):	Comparison between efferent closing pressure	92
Table (12):	Correlation between FPL & maximal closure pressure.	93
Table (13):	Dynamic closure pressure in continent & incontinent patients in relation to the FPL.	94
Table (14):	Correlation between FPL & continence status	94
Table (15):	Maximal closure pressure in relation to the continence status	95
Table (16):	Perstaltic contraction in relation to urodynamic data	96

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Arteries to the small bowel	6
Figure (2):	Arterial supply to the small bowel and colon	10
Figure (3):	Positions of the appendix	13
Figure (4):	The blood supply to the appendix	14
Figure (5):	The Lundiana pouch	17
Figure (6):	Mainz pouch with appendix stoma	18
Figure (7):	Mainz pouch with ileal nipple	. 19
Figure (8):	Indiana Pouch	20
Figure (9):	Florida Pouch	21
Figure (10):	Miami Pouch	22
Figure (11):	Surgical atlas of Mainz pouch III	23
Figure (12):	The continence achieving valve of the T pouch	26
Figure (13):	Serosal lined extramural valve as efferent segment & for ureteric implantation	26
Figure (14):	Kock pouch with efferent intussuscepted nipple limb	41
Figure (15):	Split cuff ureteral nipple	42
Figure (16):	Impericated terminal segment & ileocecal valve continence mechanism	43
Figure (17):	Kock pouch with efferent catheterizing limb	44
Figure (18):	Continence apparatus of the Benchkroun technique	45
Figure (19):	Typical flap valve of the Mitrofanoff principle	45

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (20):	Distibution of the studied cases as regared frequency of incontinence	86
Figure (21):	Distibution of the studied cases as regared frequency of complication	88
Figure (22):	Incidence of Positive urinary culture	89
Figure (23):	Bladder capacity according to the continence status	91

LIST OF ABBREVIATIONS

Abbrev.	Meaning
ACE	Angiotensin Converting Enzyme
Cr.	Creatinine
CCD	Continent cutaneous diversion
CIC	Clean intermittent catheterization
CT scan	Computed tomography scan
CUD	Continent Urinary diversion
FPL	Functional Pressure Length
GFR	Glomerular filteration rate
HCO ₃	Bicarbonate
K	Potassium
MACE	Malone Antegrade continent enema
Na	Sodium
QoL	Quality of life
SIPMT	Simplified Indiana Pouch with multiple taeniamyotomies
SIU	Societe Internationale d'urologie
TAP	Transverse ascending pouch
TDP	Transverse descending pouch
UCB	Urothelial carcinoma of the bladder
UTI	Urinary tract infection

Introduction

Although the procedures for continent urinary diversion & urinary tract re-construction have been described for more than 140 years, only in last three decades a concentrated effort have been made to evaluate the outcome of these procedures (*Hautmann*, 2007).

Urinary diversion is indicated when the bladder can no longer safely function as a reservoir for urine storage or voiding (Webster et al., 2003).

The goal of any form of urinary diversion is to deliver the urine to outside with a minimum interference of life style with a maximum protection of the urinary tract (Mahbub et al., 2008).

Orthotopic continent urinary diversion designed from detubularised ileum has gained wide spread acceptance among urologists and the patients, however this needs proper patient selection and the urethra should be normal (Mahbub et al., 2008).

When the access of a normal bladder, augmented bladder, or continent reservoir for intermittent catheterization may not be possible through the urethra. Creating an abdominal stoma is necessary (*Hinman*, 2009).

Many techniques & procedures have been described over years however few of them could survive to withstand the test of time, especially when the outlet control mechanism is not physiological (Abol-Enein et al., 2004).

When the appendix is available, submucosal implantation of the appendix provides continence and furnishes a catheterizable stoma (Mitrofanoff principle). The ureter may also be used as a conduit between the skin and the bladder when one of the renal units is nonfunctional or by performing transureteroureterostomy. Alternative approach when the appendix is not available is an opened ileal segment closed transversely (Yang-Monti technique). In patient with a large flaccid bladder a portion of the bladder may be constructed into a continent vesicostomy tube (Hinman, 2009).

Patients with a continent catheterizable stoma have a one-way valve mechanism fashioned at the insertion site that leads into the urinary storage system. The limb allows for catheterization through a small stoma on the abdominal wall, enabling the system to empty; however, this limb remains continent during the storage phase between catheterizations. Mechanisms for continence of the efferent limb include a flap valve, nipple valve, pressure equilibration, or combinations of thereof (*Joseph A Costa*, 2008).

The incidence of incontinence after continent catheterizable reservoirs is difficult to determine due to a lack of standard terminology, the use of non-validated questionnaires and retrospective evaluation. In a review by Rowland et al. an overall incontinence rate of 3.2% was found *(Rowland et al., 1996)*.

This rate varied among the different continence mechanisms of patients with intussuscepted nipples 5.8%, with tunneled appendix 3% and with stapled plicate ileocecal valves 0.6% was incontinent. Other reported incontinence rates in larger series range from 6.7% (Florida pouch) and 28% (Indiana pouch) (Holmes et al., 2002).

In a recent large series Abol-Enein et al. reported a 94.6% day- and nighttime continence. Patients catheterized at four to five hourly intervals during the day and one to two times at night (Abol-Enein et al., 2004).

Thus further evaluation is needed to determine the cause of incontinence. Potential reasons being uninhibited reservoir contractions, a low compliance high-pressure reservoir, an incompetent continence mechanism. In this setting Urodynamic and cystoscopy can be helpful to determine the underlying cause, which then needs to be treated, respectively (*Fiona et al., 2006*).

Aim of the work

To evaluate continent catheterizable stomas urodynamically as regards factors that affects continence or cause incontinence. This will help future modification to improve.

Surgical Anatomy Of Intestinal Segment Used For Urinary Diversion

For more than a century the gastrointestinal tract has been employed in numerous creative and sophisticated procedures to correct abnormalities of the genitourinary tract. Different procedures incorporating stomach, jejunum, ileum, different parts of the colon and a combination of the above bowel segments have been used in diverting, reconstructing and remodeling different portions of the urinary tract. A thorough knowledge of the surgical anatomy of these structures is necessary in order to properly isolate, mobilize and fashion them according to the requirements of the reconstructive procedures being performed (*Ramon*, 2005).

This chapter reviews the anatomy of the gastrointestinal tract and provides an overview of the anatomical considerations in the use of bowel segments in urinary reconstructive surgery.

Small bowel:

The small bowel is about 6.7 m long; (4.5-9 m). Its largest diameter is in the duodenum; the lumen becomes smaller in the more distal portions, reaching its smallest diameter in the ileum, approximately 30 cm. from the ileocecal valve. About two fifths of the small bowel is jejunum, whereas the distal three fifths is ileum. There is no definite demarcation between the two; however, each possesses several unique properties (*Dahl and McDougal*, 2010).

The ileum, being more distal in location, has a smaller diameter. It has multiple arterial arcades, and the vessels in the arcades are smaller than those in the jejunum. The ileal mesentery is also thicker than the jejunal mesentery. In contrast, the jejunal diameter is larger, the arterial arcades are usually single, and the vessels composing them are larger in diameter. The arcades anastomose one with another and give off straight vessels, which enter the bowel and form an anastomotic network within the bowel wall (Fig. 1) (*Dahl and McDougal*, 2010).

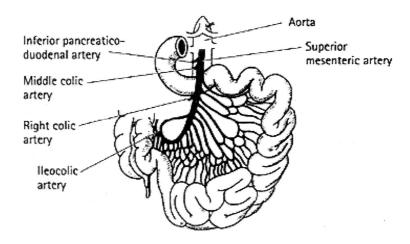


Figure (1): Arteries to the small bowel (Ramon, 2005).

In spite of the rich collateral blood supply provided by the arterial arcades, occlusion of a major branch of the superior mesenteric artery will lead to bowel death if not quickly corrected. However, straight vessels can be cleaned from the small bowel up to distance of 15 cm without necrosis of such a