Serum LINE-1 hypomethylation as diagnostic marker for hepatocellular carcinoma

Thesis Submitted In Fulfillment for

The Master Degree in Tropical Medicine

By Alaa Aboud Mohammad

MB.B.Ch
SUPERVISORS

PROF. DR. Iman Ismail Ramsy
Professor of Tropical Medicine
Faculty of Medicine – Cairo University
PROF. DR. Olfat Shaker
Professor of Biochemistry

Faculty of Medicine – Cairo University

PROF. DR. Osama Mohammad Hamm ad

Assistant professor of Tropical Medicine

Faculty of Medicine – Beni-Suef University

Faculty of Medicine

2009

Cairo University

ABSTRACT

Back ground: Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world with a 5 year survival rate of less than 5% and an incidence of at least one million new patients per year.

Incidence of HCC in Egypt is currently increasing, which may be the result of a shift in the relative importance of HBV and HCV as primary risk factors.

Objective: The aim of this work is to assess use of serum LINE-1 hypomethylation as a diagnostic and prognostic marker for HCC.

Methods: The present study was performed on ninety patients and 10 healthy subjects; fifty patients had hepatocellular carcinoma, twenty patients had liver cirrhosis and twenty patients had chronic hepatitis C.

Serum LINE-1 hypomethylation measurement was performed including DNA preparation and measurement of hypomethylation

Results:

- -Serum LINE-1 hypomethylation was a statistically highly significant (p < 0.01) in HCC group when compared with the control groups.
- At cut off value of 60 nmol/l (Best cut off) Serum LINE-1 hypomethylation yields a sensitivity, specificity, positive predictive value and negative predictive values of 46%, 95%, 95.83%, and 41.30 respectively.

Hypomethylation values is significantly higher in multiple tumors, Tumor size 5 or > 5cm, and in patients with PVT than in single tumors, Tumor size <5 cm and patients with no PVT.

CONCLUSION

Serum LINE-1 hypomethylation can serve as prognostic marker of HCC.

Serum LINE-1 hypomethylation is more valuable than alpha fetoprotein as a prognostic marker of HCC.

Key Words: HCC, Serum LINE-1 hypomethylation.

ACKNOWLEDGMENT

"First and Foremost, Thanks are Due to GOD, The Beneficent and Merciful of All"

It was an honor to work under the supervision of eminent professors, who lent me their whole hearted support and immense facilities as is their usual with their juniors. To them, I owe more than I can record.

I would like to express my deepest gratitude and sincere thanks to Prof. Dr. Iman Ismail Ramsey Professor of Tropical Medicine, Faculty of Medicine, Cairo University, for her instructive supervision, continuous guidance, Support, valuable instructions and offering all facilities.

My thanks and appreciation to Prof. Dr. Olfat Shaker, Professor of Biochemistry, Faculty of Medicine, Cairo University, for her valuable instructions and offering all facilities.

Many thanks to Dr. Osama Mohammad hammad, assistant professor of Tropical Medicine, Faculty of Medicine, Beni-suef University, for his continuous help, valuable suggestions, guidance and encouragement during the progress of this work.

I am greatly honored to express my deep gratitude and faithfulness to Dr. Dalia Omran, Lecturer of Tropical Medicine, Faculty of Medicine, Cairo University for her continuous help and I would like to thank her for the close and patient revision of the work.

Finally, No words can express my deepest appreciation and gratitude to my family for their never ending support and care.

TABLE OF CONTENT

	Page
Introduction	I-XVIII
Abstract	II
Acknowledgment	IV
Table of contents	\mathbf{V}
List of tables	VII
List of figures	IX
List of abbreviations	X
Introduction	XII
Aim of the Work	XV
	XVII
Review of Literature:	
Chapter One	1-21
• Epidemiology	2
-HCC in Egypt	5
HEPATOCELLULAR CARCINOMA RISK FACTORS	7
- Hepatitis B virus infection	
- Hepatitis C virus infection	8
- CLINICAL DIFFERENCES BETWEEN HBV AND HCV	13
RELATED HCC	14
- AFLATOXIN B1 EXPOSURE	
	17
- Role of alcohol	19
- TOBACCO SMOKING and others	20
- Family history	21
Chapter Two	22-38
Genetic basis of hepatocarcinogenesis.	23
- MECHANISMS OF MALIGNANT TRANSFORMATION	26
- Role of chromosomal instability in hepatocellular carcinoma	27
- ROLE OF DNA HYPERMETHYLATION IN HCC.	
- ROLE OF DNA HYPOMETHYLATION IN HCC.	30
- RELATION SHIP BETWEEN CHROMOSOMAL	34
INSTABILITY AND CPG ISLAND METHYLATION IN	35
нсс.	
- HISTONE MODIFICATION	38
Chapter Three	39-73
DIAGNOSIS OF HEPATOCELLULAR CARCINOMA	40
Serological Tumor Markers:	41
- Oncofetal antigens and glycoprotein antigens:-	41
	41
Alpha-fetoprotein and alpha-fetoprotein-L3	71

❖ Glypican-3	
- ENZYMES AND ISOENZYMES:-	44 46
❖ Gamma-glutamyl transferase	46
❖ Alpha-l-fucosidase	46
 Des-gamma-carboxyprothrombin 	47
	47
-GENES:-	49
❖ LINE-1	49
❖ Alpha-fetoprotein mRNA	51
❖ Gamma-glutamyl transferase mRNA	52
Human telomerase reverse transcriptase mRNA	
Cancer-testis antigens	53
❖ Melanoma antigen gene (MAGE)	53
· · · · · · · · · · · · · · · · · · ·	54
- CYTOKINES:-	
❖ Vascular endothelial growth factor	56
❖ Interleukin- 8	56
Transforming growth factor-beta 1	56
Tumor-specific growth factor	57
- Others:-	58
Serum thioredoxin	
 Serum angiotensin-converting enzyme (SACE) 	58
	59
❖ Serum vascular-cell adhesion molecules (VCAM-1)	59
❖ Nitrite/Nitrate Concentrations	59
❖ Prothrombin Induced by Vitamin K Absence (PIVKA-	
\mathbf{II})	59
❖ Golgi protein 73	
Hepatocyte growth factor (HGF)	59
Squamous cell carcinoma antigen (SCCA)	60
-Imaging techniques:	61
-Ultrasonography	63
❖ Greyscale Ultrasound	64 64
❖ Doppler US	65
❖ Power Doppler US	67

❖ Contrast enhanced US	
❖ Intraoperative US	68
Computed Tomography (CT)	70
-Computed Tomography (CT)	71
-CT angiography and CT arterioportography (CTAP)	
	72
-Magnetic Resonance Imaging (MRI)	
	72
	75-83
Patients and Methods	
Results	85-117
Discussion	118-130
Summary and Conclusions	131-135
Recommendations	136
References	137-168
Arabic Summary	169-173

List of Tables

Table (1) reflecting different risk factors	7
Table (2) Demographic features of the studied groups	87
(Table3) Comparison of clinical features of the studied cases	90
(Table 4) Sonographic findings of the studies cases	91
Table 5: Ultrasonographic characteristics of the focal hepatic lesions and portal vein patency in HCC patients:	94
(Table 6) Child classes of the HCC and LC groups	97
(Table7)Comparison of hypomethylation level between different groups	101
Table8-A)Comparison between alpha feto protein values in the 4	102
groups. AFP (Absolute values) Table8-BComparison between alpha feto protein values in the 4 groups. AFP (Log values)	102
Table (9) Statistical comparison of Alpha-fetoprotein and serum LINE-1 hypomethylation values between different groups.	103
(Table10) shows the sensitivity, specificity, positive predictive value and negative predictive values of serum LINE-1 hypomethylation at	103
different cut off values.	
(Table 11) shows the sensitivity, specificity, positive predictive value and negative predictive values of alpha-feto protein at different cut off values	104
(Table 12)Correlations between AFP and LINE-1 hypomethylation in HCC groups	105
(Table 13)Comparison of hypomethylation values in relation to AFP values	106
(Table 14)Comparison of hypomethylation values in relation to age groups.	108
Table 15)Correlations between age and hypomethylation in HCC group	109

(Table 16) Shows hypomethylation values in relation to sex in HCC	110
group	
	111
Table 17) Shows hypomethylation values in relation to child classes in	
HCC group	
(Table 18) Comparison between hypomethylation values and alpha-	112
etoprotein values in relation to tumor numbers in HCC group	
Table 19) Comparison between hypomethylation values and alpha-	114
etoprotein values in relation to tumor size in HCC group	
Table (20)Comparison between hypomethylation values and alpha-	116
etoprotein values in relation to portal vein thrombosis in HCC group	

List of Figure

Figure 1 Two possible models for the progression from normal liver to hepatocellular carcinoma (HCC).	36
Fig (2-A): Combined bisulfite restriction analysis of LINE-1(COBRA LINE-1) in sera.	81
Fig (2-B): Combined bisulfite restriction analysis of LINE-1(COBRA LINE-1) in sera.	82
(Fig 3): Demographic features of the studied group	88
Figure (4): Distribution of sonographic findings of liver size among the study groups	92
Figure (5): Distribution of sonographic findings of spleen among the study groups	92
Figure (6): Distribution of sonographic findings of ascites among the study groups	93
Figure (7): Distribution of tumor number among cases with HCC	95
Figure (8): Distribution of PVT among cases with HCC	95
Figure (9): Distribution of echogenicity among cases with HCC	96
Figure (10): Distribution of tumor size among cases with HCC	96
Figure (11): Distribution of Child score among cases with HCC and those with liver cirrhosis	98
(Fig 12) Comparison of Hypomethylation level between different groups	101
(Fig 13)Comparison between alpha feto protein values in the 4 groups	102
Fig14) ROC Curve of serum LINE-1 hypomethylation and alpha-feto protein in HCC and LC patients	104
Figure (15): Correlation between AFP and LINE-1 hypomethylation among cases with HCC	106

(Fig 16)Comparison of hypomethylation values in relation to AFP values	107
(Fig 17)Comparison of hypomethylation values in relation to age groups	108
(Fig 18)Correlations between age and hypomethylation	109
(Fig 19) Shows hypomethylation values in relation to sex in HCC group	110
(Fig 20) Shows hypomethylation values in relation to child classes in HCC group	111
(Fig 21) Comparison of alpha-fetoprotein values in relation to tumor numbers	113
(Fig 22) Comparison of hypomethylation values in relation to tumor numbers	113
(Fig23) Comparison of alpha-fetoprotein values in relation to tumor size	115
(Fig 24) Comparison of hypomethylation values in relation to tumor size	115
Fig 25)Comparison of hypomethylation values and alpha-fetoprotein values in relation to portal vein thrombosis	117
(Fig 26)Comparison of hypomethylation values in relation to portal vein thrombosis	117

LIST OF ABBREVIATIONS

AFB1 : Aflatoxin B1

AFP : Alpha fetoprotein.

AFPIC : Alpha fetoprotein Immunocomplexes.

AFU Alpha-1- Fucosidase

ALT : Alanine Transaminase

Anti-HBe : Hepatitis B virus hidden antibodies

bp : base pairs

CEA : Carcinoembryonic antigen

CEUS : Contrast enhanced ultrasound

CIMP : Cytosine phosphoguanine Island Methylator Phenotype

CIN :Chromosomal Instability

COBRA : combined bisulfite restriction analysisCPG : Cytosine phosphoguanine dinucleotides

CT : Computed Tomography

CTAP :CT arterioportography

CT antigens : Cancer Testis antigens

CTL :Cytotoxic T cells

DCP :Desgammacarboxyprothrombin

DNA : Deoxy ribonucleic acid

DNMTs : DNA methyl Transferases

DUS : Doppler ultrasound

E-Cadherin : Epithelial calcium dependent adhesion molecules

FI-F4 : Degrees of liver fibrosis

GAGHCC :Guide with Age, Gender, HBV DNA, Core promoter

mutations and Cirrhosis

GGT Gamma glutamyl transferase

GP73 Golgi protein 73

GPC3 Glypican-3

HBe Ag Hepatitis B virus hidden antigen
HBs Ag Hepatitis B virus surface antigen

HBV Hepatitis B virus

нсс : Hepatocellular Carcinoma

HCV Hepatitis C virus

HGF : Hepatocyte growth factor

HR : High risk

hTERT : Human telomerase reverse transcriptase

IL-8 : Interleukin-8

ious : Intraoperative ultrasound

кь : Kilo base

LINE-1 : Long interspersed nuclear element

LCA : Lectin Lens Culinaris agglutin

MAGE: Melanoma antigen gene

MBDs : Methyl CPG binding proteins

5-mc : 5- methyl cytosine

MINT : Methylated in Tumor

MLH 1 : Mutl homolog 1

m RNA : Magnetic Resonance Imaging
: Messenger ribonucleic acid

ORF : Open reading frame

P53 : Protein 53

PBMC: peripheral blood mononuclear cells

PC: Prothrombin Concentration
PCR: Polymerase Chain Reaction

PET : Positron Emission Tomography

PIVKA : Prothrombin induced by vitamin K absence

PPV : Positive predictive value

PT : Prothrombin Time

RIZ 1 : Retinoblastoma protein interacting zinc finger gene

RNA : Ribonucleic acid

RTPCR : Reverse transcription PCR

SACE : Serum angiotensin converting enzyme

SCCA : Squamous cell carcinoma antigen

SCCAIC : Squamous cell carcinoma antigen Immunocomplexes.

socs 1 : Suppressor of cytokine signaling 1ssx-2 : Synovial sarcoma x break point 2

TGF-B1 :Transforming growth factor beta 1

THI :Tissue harmonic imaging

TSA : Total sialic acid

TSG :Tumor suppressor gene

TSGF: Tumor specific growth factor

ULN : upper limit of normal

VCAM-1 :Vascular cell adhesion moleculesVEGF :Vascular endothelial growth factor

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world with a 5 year survival rate of less than 5% and an incidence of at least one million new patients per year. (Bruix et al., 2004).

HCC incidence rate has been increasing over the last two decades of the 20th century. In the United States, the reported incidence has increased to 4.7/100,000. The male population, both black and white, is primarily affected. However, the incidence of HCC in eastern Asia and middle Africa is more than five times that of North America. Furthermore, from 1981 to 1985 the peak incidence of HCC occurred in patients 80 to 84 years of age, whereas from 1991 to 1995 the peak was noted in persons 74 to 79 years of age. This shift in incidence toward younger persons seen over the last two decades coincides with the prevalence of the hepatitis C Virus infection. (Jorge and Marrero, 2003)

Incidence of HCC in Egypt is currently increasing, which may be the result of a shift in the relative importance of HBV and HCV as primary risk factors. HCC is the second most frequent cause of cancer incidence and mortality among men in Egypt. Hospital based studies from Egypt have reported an increase in the relative frequency of all liver-related cancers in Egypt (>95% as HCC), from _4.0% in 1993 to 7.3% in 2003. (El-Zayadi et al.,2005)