BIOTREATMENT OF OLIVE MILL WASTEWATER FOR AGRICULTURAL USES

Submitted By

Ghada Amin Zaki Ibrahim

B.Sc. of Agricultural Sciences (Microbiology), Ain Shams University, 1998
 M.Sc. in Environmental Sciences, Institute of Environmental Studies &
 Research, Ain Shams University, 2008

A thesis submitted in Partial Fulfillment

OF

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

BIOTREATMENT OF OLIVE MILL WASTEWATER FOR AGRICULTURAL USES

Submitted By

Ghada Amin Zaki Ibrahim

B.Sc. of Agricultural Sciences (Microbiology), Ain Shams University, 1998
 M.Sc. in Environmental Sciences, Institute of Environmental Studies &
 Research, Ain Shams University, 2008

A thesis submitted in Partial Fulfillment

OF

The Requirement for the Doctor of Philosophy Degree
In

Environmental Sciences
Department of Environmental Agricultural Sciences

Under Supervision of:

1. Prof. Dr. Elshahat Mohammed Ramadan

Prof. of Microbiology Faculty of Agriculture, Ain Shams University

2. Prof. Dr. Tarek Said El-Tayeb

Prof. of Microbiology Faculty of Agriculture, Ain Shams University

3. Dr. Amal Mohammed Omar Salem

Assoc. Prof. of Microbiology - Desert Research Center

4. Dr. Mohammed Abd El-Aziz AboElkhair

Assoc. Prof. of pestside - Desert Research Center

ABSTRACT

Olive mill waste water (OMWW) is a liquid by-product generated during olive oil production and widely known for its fertilizing value in sustainable agricultural systems. OMWW samples collected from different localities in Egypt were subjected to different chemical, physical and microbiological analysis to determine its quality as fertilizer. The presence of high content of phenolic compounds, COD and BOD were the great challenge to convert this waste rich with nutrients into safe and highly efficient biofertilizer. Aerobic OMWW fermentation processes were conducted to eliminate its phytotoxicity by removal of phenolic compounds present.

From twenty nine microbial isolates, the most efficient two bacterial isolates which degraded phenols to a greater extent within a relatively short time were selected for fermentation process and identified by partial 16S rRNA gene sequence analysis as *Enterobacter asburiae*, and *Pseudomonas aeruginosa*. Factors affecting the fermentation process and their impact on phenolic compounds degradation were optimized and the results revealed that the optimum pH values were (6 and 7), incubation temperature (25°C and 30°C), inoculum size (2ml\ 100ml OMWW), nitrogen sources (ammonium sulphate 1gm\L for both microbes), incubation period (27 and 30 days) anaerobic static cultures with 25% OMWW for *E. asburiae* and *Ps. aeruginosa*, respectively. Under these conditions of fermentation, phenolic compounds degrading ability was 82.6% for *Pseudomonas aeruginosa* and 79.9% for *Enterobacter asburiae*.

At the end of fermentation process, high energy components as total phenolic compounds phytohormones, amino acids, and antioxidants were determined using HPLC, amino acid analyzer and spectrophotometer, respectively. HPLC analysis revealed that the degradation rate of phenolic compounds ranged from 75 to 98.5 and 57.5 to 99.16% for *Ps. aeruginosa* or *E. asburiae*, respectively. Qurectin, catechol and caffiec acid were subjected to the maximum degradation rate of phenolic compounds while tyrosol, gallic acid and catchin showed less degradation levels by either *Ps. aeruginosa* or *E.*

asburiae. The phytohormones in the form of gebrillic acid increased in fermented OMWW by *Ps. aeruginosa* and *E. asburiae* to 15687.06 ppm and 12915.68 ppm, compared to 11815.89 ppm for unfermented control. A remarkable increase in total amino acids in fermented OMWW was detected reaching 459.19 mg\ml and 559.81 mg\ml for OMWW fermented with *Ps. aeruginosa* and *E. asburiae*, respectively comparing with unfermented control (1.844 mg\ml). The average concentration of antioxidants (Butylated hydroxyanisole "BHA" and tertiary butylhydroquinone "TBHQ", respectively as standards) using in fermented OMWW by *Ps. aeruginosa* were (0.869 mol\ l) and (0.831 mol\ l), respectively, while in fermented OMWW by *E. asburiae* were (0.675 mol\l) and (0.641 mol\l) comparing to unfermented OMWW in which they were (0.862 mol\l) and (0.587 mol\l), respectively.

A Pot experiment was conducted at Desert Research Center - Egypt during summer 2012, to evaluate using of raw OMWW and different types of fermented ones as fertilizers using different types of application methods on *Sorghum bicolor* (L). The data indicated that application of OMWW fermented with *Ps. aeruginosa* or *E. asburiae* applied as soil drench application recorded the maximum positive effects on different traits as height of shoot and length of root, fresh and dry weight of shoot and root and leaf area index while unfermented OMWW recorded the minimum results comparing to control. Also application of fermented OMWW by *Ps. aeruginosa* and *E. asburiae* gave the maximum results of NPK, chlorophyll and carbohydrate contents followed by that of unfermented one compared to control (chemically fertilized plants).

A field experiment was conducted at Banger El-Sokkar area – Alexandria, Egypt during summer 2013 to study the effect of fermented OMWW applied as soil fertilizer on the growth and productivity of *Sorghum bicolor*. The experiment revealed that the maximum growth and yield parameters of plant were recorded with OMWW fermented by *Ps. aeruginosa* (80%), followed by *E. asburiae* (68%) as soil drench. This was also true for all plant chemical constituents measured.

Microbiological analysis of *Sorghum* rhizosphere revealed that application of OMWW fermented with *Ps. aeruginosa* or *E. asburiae* had positive effects on counts of total microbes, nitrogen fixers count and *Pseudomonads* comparing with control while unfermented OMWW had negative effects.

The present study deals with the potential of natural chemicals present in OMWW extracts with sequential concentrations as bioherbicides. OMWW extracts investigated for the inhibitory effects at 0, 25, 50, and 100 % (v/v) dilutions under laboratory conditions while, higher concentrations of OMWW completely suppressed the weeds: Portulaca oleracea, Echinochloa crus-galli and Corchorus olitorius) as well as Sorghum bicolor seed germination and growth parameters by 100 %, comparing with control. The results showed that OMWW ethyl acetate crude extract at 500, 1000 and 2000 ppm inhibited the growth of P. oleracea, E. crus-galli and C. olitorius and slightly reduced S. bicolor growth parameters under laboratory conditions, which confirmed the herbicidal activity of sterilized OMWW water extract under laboratory and greenhouse conditions. For weed applications, unfermented OMWW can be used as bioherbicides for their markedly broadcast phytotoxicity, while the fermented OMWW with E. asburiae and Ps. aeruginosa can be used as biofertilizers without any negative impact on soil microbial activity. The LC-ESI-tandem MS analysis of OMWW ethyl acetate extract confirmed the presence of the common phenolic compounds; phenyl propionic acids, quinic acids, caffeoylquinic acids, apigenin -7-rutinoside, benzoic acid, apigenin, vanillic acid, sinapayl alcohol 4glycoside, tyrosol, hydroxytyrsol acetate, hydroxyltyrsol rhamoside, hydroxytyrosol glycoside and luteolin-7-glucoside. Some unusual compounds such as ligstroside isomers, pinoresinol, oleoside and oleuropein were also detected. Their presence in the extract may be responsible of the biological and bio-pesticides activities a matter that should need further investigation for use in sustainable agricultural systems.

Key words: Olive mill waste water, fermentation, *Enterobacter* asburiae, *Pseudomonas aeruginosa*, Sorghum

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to **Prof. Dr. Elshahat Mohamed Ramadan**, Professor of Microbiology, Faculty of Agriculture, Ain Shams University, and **Prof. Dr. Tarek Said El-Tayeb**, Professor of Microbiology, Faculty Agriculture, Ain Shams University. For supervision, continuous support of my PhD study and research, for their patience, motivation, enthusiasm and immense knowledge. I could not have imagined having better advisors and mentors for my PhD study.

I would like to thank **Dr. Amal Mohammed Omar Salem**, Assoc. Professor of Microbiology in soil microbiology unit – Desert Research Center and **Dr. Mohammed Abd El Aziz Abo Elkhair**, Assoc. Professor of pestside in Plant Protection Division – Desert Research Center. For supervision, their encouragement, insightful comments and their essential assistance in reviewing the patient files of this study.

Special thanks to **Prof. Dr. Gabriele Berg** and **Dr. Martina Koberl**, Institute of Environmental Biotechnology, Graz University of Technology, Graz, for Identification of bacterial isolates.

My sincere thanks also to **Dr. Sherif Ibrahim**, Researcher at Fertility and Microbiology of Soil, **Dr. Rabaa Yasien**, Researcher at soil microbiological unit, **Mrs. Eman Abd El Lateef**, Assistant Researcher - Desert Research Center for giving me untiring help during my difficult moments.

During this work I have collaborated with coworkers for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work.

Last but not the least; I would like to thank my family: my parents for supporting me spiritually throughout my life, and I owe my loving thanks to my son **Amr**, he has lost a lot due to my research. Without his encouragement and understanding it would have been impossible for me to finish this work, to him I dedicate this thesis.

CONTENTS

TITLES	PAGES
1-INTRODUCTION	1
2-REVEW OF LITERATURE	4
2.1. Chemical and microbiological properties of unfermented olive mill wastewater (OMWW)	4
2.2. Aerobic phenolic compounds degrading microorganisms	7
2.3. Identification of bacterial degrading phenolic compounds	11
2.4. Bioremediation of OMWW by some phenolic compounds degrading microorganisms	12
2.5. <i>Enterobacter</i> and <i>Pseudomona</i> as as phenolic compounds degraders' bacteria	15
2.6. Factors affecting the bio-treatment of OMWW using <i>Enterobacter</i> and <i>Pseudomonas</i> isolates	18
2.7. Antioxidants activity of OMWW	21
2.8. Effect of fermented OMWW as biofertilizer on <i>Sorghum bicolor</i> (L) crop and some cereals crops	23
2.9. Effect of OMWW toxic compounds on soil microorganisms	25
2.10. Phytotoxicity of OMWW against weeds and crops	27
3 - MATERIALS AND METHODS	31
3.1. Olive mill wastewater	31
3. 2. Plants materials	31
3.3. Culture media	31
3.4. Standard inoculum	35
3.5. Chemical and microbiological analysis of OMWW and soil used in pot and field experiments	36
3.6. Phytotoxicity test of different OMWW treatments against Tomato plants	38

3.7. Isolation and screening of the most active phenolic compounds degrading microbial isolates	38
3.8. Identification of phenolic compounds degrading	39
bacteria	
3.9. Adaptation of bacterial isolates to phenol	40
3.10. Assay of phenol elimination capacity of bacteria	40
3.11. Optimization of biodegradation conditions of	41
phenolic compounds by one variable at a time approach	41
3.11.1. OMWW concentration	41
3.11.2. Effect of incubation period	41
3.11.3. Effect of temperature	42
3.11.4. Effect of initial pH values	42
3.11.5. Effect of agitation	42
3.11.6. Effect of carbon sources	43
3.11.7. Effect of nitrogen sources	43
3.11.8. Effect of inoculum size	44
3.11.9. Effect of prepared yeast extract	44
3.11.10. Effect of soil extract	44
3.12. Chemical analysis of main components in	
unfermented and fermented OMWW	45
1- Total phenolic compounds determination	45
2- Total amino acids content	45
3- Plant hormones determination by HPLC	47
A- Extraction of acidic fraction	47
B- Estimation of acidic hormone using HPLC	47
4- Anti-oxidants assay	47
3.13. Pot and field experiments	49
3.13.1. Parameters of plants growth	50
3.13.2. Elemental composition of plants	51
3.14. Effect of OMWW extracts on Sorghum bicolor	50
and weed seeds control	52
A- Preparation of OMWW water extract	52
B- Preparation of OMWW ethyl acetate extract	52
1. In vitro effect of OMWW water extract on Sorghum	53

bicolor and weed seeds control	
2. In greenhouse	53
2.1. Pre-emergence activity	53
2.2. Post – emergence activity	54
3. In vitro effect of OMWW ethyl acetate on <i>Sorghum bicolor</i> and weed seedlings growth	54
4. Effect of unfermented OMWW ethyl acetate crude	
extract effects on Sorghum (Sorghum bicolor) and weeds	55
control in greenhouse	
5. OMWW ethyl acetate extract analysis by LC-Tandem MS (Qualitative)	56
6. Mass spectrometric conditions	56
3.15. Statistical analysis	57
4. RESULTS & DISCUSSION	58
4.1. Chemical and microbiological analysis of OMWW	58
4.2. Phytotoxicity test of different OMWW against	36
Tomato plants	62
4.3. Isolation and selection of the most active phenolic	
compounds degrading bacterial isolates	63
4.4. Identification of phenolic compounds degrading bacteria	66
4.5. Adaptation of bacterial isolates on phenolic compounds	69
4.6. Assay of phenol elimination capacity of bacteria	70
4.7. Optimization of biodegradation conditions of phenolic compounds by one variable at time approach	71
4.7.1. OMWW concentration	5 4
4.7.1. OW W Concentration	71
4.7.2. Effect of incubation period	73
4.7.3. Effect of incubation temperature	74
4. 7.4. Effect of pH	75
4.7.5. Effect of agitation on phenolic compounds degradation in OMWW	76
4.7.6. Effect of carbon sources	77