

SURGICAL MANAGEMENT OF ACROMIOCLAVICULAR JOINT INJURIES

Essay

Submitted for Partial Fulfillment of Master Degree In Orthopedic Surgery

By Deyaa El-Din Mohamed El-Leithi(M.B;B.Ch.)

Supervised by

Prof. Dr. Nasser Hussien Zaher

Professor of Orthopedic Surgery
Faculty of Medicine - Ain Shams University

Dr. Ashraf Mohamed Elseddawy

Lecturer of Orthopedic Surgery
Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2016

List of Contents

Ti	Title Page		
•	List of Abbreviations	I	
•	List of Tables	II	
•	List of Figures	III	
•	Introduction	1	
•	Aim of the Work	5	
•	Review of Literature		
	- Chapter (1): Anatomy of Acromioclavicular Joint	6	
	- Chapter (2): Biomechanics of Acromioclavicular Joint	14	
	- Chapter (3): Diagnosis of Acromioclavicular Joint Injuries	27	
	- Chapter (4): Treatment of acromioclavicular joint	52	
•	Conclusions	129	
•	Summary	130	
•	References	132	
•	Arabic Summary		

List of Abbreviations

AC.....Acromioclavicular

IRInternal rotation

K-wire.....Kirschner wire

IB.....Pound

LARSligament augmentation and reconstruction system

ORIF.....Open reduction internal fixation

PA.....Postero-anterior

ROMRange of motion

SC.....Scapula

SSSC.....Superior shoulder suspensory complex

Trapezoid

List of Tables

Table No.	Title	Page	
Table (1):	Classification of ac joint injuries	34	
Table (2):	Showing phase 1 and phase 2 post-		
	operative acromioclavicular rec	C-	
	onstruction rehabilitation	109	
Table (3):	Showing phase 3 and phase 4 pos	t-	
	operative acromioclavicular rel	1-	
	abilitation	116	
Table (4):	Complications of acromioclavicula	ar	
	joint reconstruction121		

List of Figures

Figure No.	Title Page
Fig. (1):	Anatomic illustration of the AC and CC joint complex
Fig. (2):	The S-shaped clavicle is the only direct connection between the pectoral girdle and the axial skeleton 8
Fig. (3):	The upper limb articulates with the pectoral girdle at the scapula
Fig. (4):	Axial view of the scapula and clavicle during sagittal plane elevation
Fig. (5):	Sagittal view of the scapula and clavicle during sagittal plane elevation
Fig. (6):	The direction of the in situ force in the trapezoid and conoid for superior loading
Fig. (7):	Most acromioclavicular injuries occur from a direct blow to the acromion as in a fall on the point of the shoulder
Fig. (8):	Classification of acromioclavicular joint injuries
Fig. (9):	Clinical finding in an acromioclavicular joint dislocation type V
Fig. (10):	The position of the examiner's hand for the Paxinos test
Fig. (11):	Crossed arms adduction maneuver 39

Figure No	. Title Page
Fig.(12):	The Bell-van Riet test40
Fig. (13):	The active compression test is performed with the patients shoulder flexed to 90 degrees, adducted 1 0 to 15 degrees across the body, and the elbow extended
Fig. (14):	a-b demonstrate PA and scapular Y plain radiographs of a right shoulder with a type V AC separation
Fig. (15):	The Zanca AP view of the acromioclavicular joint is obtained by tilting the x-ray beam 10 degrees to 15 degrees cephalad
Fig. (16):	A bilateral Zanca radiograph improves detection of subtle AC Pathology by allowing a direct comparison with the contralateral shoulder
Fig. (17):	a, coronal plane of enhanced MR images. b, sagittal of enhanced MR images in type 2 ac joint injury representing subluxation, the acromioclavicular ligaments51
Fig. (18):	Kenny-Howard-type shoulder immobilization brace used for acromioclavicular sprains
Fig. (19):	Algorithm for the treatment of type III AC separations59

Figure No.	Title Page
Fig. (20):	Postoperative radiograph showing well reduction of acromioclavicular joint with Kirschner wire fixation 67
Fig. (21):	Postoperative radiograph showing well reduction of acromioclavicular joint with hook plate fixation
Fig. (22):	Coracoclavicular screw fixation bosworth screw fixation
Fig. (23):	Variation of the Weaver-Dunn procedure with transfer of the coracoacromial ligament
Fig. (24):	Transfer of the acromial attachment of the coracoacromial (CA) ligament 77
Fig. (25):	Double Endobutton acromio-clavicular joint re-construction technique80
Fig. (26):	radiographic imaging showing surgical technique for CC ligament augmentation using a flip button/polyethylene belt repair81
Fig. (27):	Direct approach on AC joint showing 2 clavicular tunnels at conoid (Co) and trap- ezoid (Tr) points with Vicryl suture
Fig. (28):	(A) final reconstruction before securing of last nylon knot and (B) schema of final reconstruction. One should note the nylon tape passage (blue) through the 4 bony tunnels (yellow)

Figure No.	Title	Page
Fig. (29):	Ac - reco - bridge technique preparation and reduction acromio-clavicular joint	of
Fig. (30):	Single-channel coracoclavicula suture tape stabilization	
Fig. (31):	Morphology of acromioclavicula ligament tear patterns	
Fig. (32):	Shuttling of FiberTape in AC RecoBridge technique	
Fig. (33):	Placement of the ACL guider	98
Fig. (34):	Illustration of surgical technique for CC ligament augmentation using flip button/polyethylene belt repair.	a
Fig. (35):	View of a right shoulder with Rockwood type V acromioclavicula joint separation	ar
Fig. (36):	A, Arthroscopic view of a right shoulder from the anterolaterate portal depicting the undersurface of the coracoid with 2 long flip button in anatomical position	al of is
Fig. (37):	Right shoulder. Preoperative Rockwood V separation scapular-Y view (A). AP (Escapular-Y (C), and axillary (D) view directly after operative reduction	8), 78
Fig. (38):	Pendulum exercise Bend over at the waist and let the arm hang down	

Figure No.	Title	Page
Fig. (39):	Supine passive arm elevation Lie your back. Hold the affected arm the wrist with the opposite hand	at
Fig. (40):	Supine external rotation Lie on you back. Keep the elbow of the affect arm against your side with the elbohent at 90 degrees	ced ow
Fig. (41):	Behind-the-back internal rotation Sitting in a chair or standing, platthe hand of the operated arm behing your back at the waistline	ace nd
Fig. (42):	Hand-behind-the-head stretch Lie your back	
Fig. (43):	Sidelying internal rotation stretch on your side with the arm position so that the arm is at a right angle the body and the elbow bent at a gangle	to 00°
Fig. (44):	External rotation at 90° abducti	
Fig. (45):	Seated row exercise	119
Fig. (46):	Two examples of migration of smooth pins in the lung (A) a mediastinum (with broken tip in the pericardial sac (B) used for AC joint fixation following AC separation	nd he int

Abstract

There are two etiologies of injury to acromioclavicular joint, the first by direct blow to the lateral aspect of the shoulder with arm adducted, and the second by indirect force by falling on an outstretched hand.

Diagnosis of these injuries depends on clinical presentation, physical examination and imaging studies, and it is classified in to 6 degrees of injuries.

Treatment is conservative for type one and two injuries and surgical for type 4, 5 and 6. Type 3 management is controversial, Surgical treatment may be open surgical or arthroscopic.

Keyword:

Acromioclavicular; Surgical Management injuries; Arthroscopic.

INTRODUCTION

Injuries to the acromioclavicular joint account for approximately 12% of injuries to the shoulder girdle seen in clinical practice⁽¹⁾. They are between five and ten times more common in males⁽²⁾.

The acromioclavicular joint provides a 'keystone' link between the scapula and the clavicle (3). The joint is surrounded by a thin fibrous capsule which is reinforced by superior, the inferior, anterior and posterior acromioclavicular ligaments. The superior and posterior components provide the most significant contribution to horizontal stability at the joint, and the coracoclavicular ligament which consists of the conoid and trapezoid which stabilize the acromioclavicular components articulation and co-ordinate scapulothoracic rotation during abduction and flexion of the shoulder⁽⁴⁾.

Until recently, movement at the acromioclavicular joint had not been accurately defined and was perhaps underestimated. It is now appreciated that during abduction of the shoulder, there is 15° of protraction, 21° of upward rotation and 22° of posterior tilting of the scapula relative to the clavicle at the joint⁽⁵⁾.

Tossy, Mead and Sigmond, described three types of acomioclavicular injuries, to which Rockwood et al added a further three subgroups⁽²⁾.

In type-I injuries, there is partial and in type II complete disruption of the acromioclavicular ligaments. In type-III injuries, the vertical translation at the joint is up to the width of the clavicle while in type IV, the clavicle is displaced posteriorly through the trapezius. In type-V injuries the degree of separation is greater because of the concomitant disruption of the deltotrapezius fascia attached to the lateral end of the clavicle, allowing the end of the clavicle to lie subcutaneously. In the very rare type-VI injury, the clavicle is displaced inferiorly and comes to lie below the coracoid process underneath the conjoint tendon (6)

The clinical diagnosis of an acute acromioclavicular injury is usually relatively simple since the pain is commonly localized accurately to the area of the joint. The joint is tender to palpation and the clavicle often feels mobile It is specific for injury to the acromioclavicular joint only if pain is localized to the joint⁽⁷⁾.

The grading of the injury is made on radiological examination as determined by the extent of displacement of the articular surfaces.

Ultrasound and MRI are not widely used, but can be employed to detect effusions from the joint, assess the extent of injury to the ligaments and the deltotrapezius aponeurosis, and to determine the degree of degenerative changes in patients who develop delayed symptoms⁽⁸⁾.

The aim of the treatment of acromioclavicular joint injury should be to return the patient to the level of function before injury, with a pain-free, strong and mobile shoulder (3)

Conservative treatment is almost universally applicable to type-I and type-II injuries, The most common form of non-operative treatment involves simple analgesia, topical ice therapy and rest in a sling to give relief from symptoms⁽¹⁾.

Contact sports and heavy lifting should be avoided for 8 to 12 weeks after injury⁽⁹⁾, Operation may be considered for these patients if they have ongoing symptoms at three months after the original injury. Conservative treatment also remains the preferred initial mode of management for most type-III injuries because of the excellent prognosis in most patients with this injury, Secondary surgical reconstruction is seldom needed⁽¹⁰⁾.

Operation is used to treat patients with type- IV and type-V injuries⁽¹²⁾ Type-VI injuries are very rare, and almost all reported cases have been treated surgically⁽⁴⁾.

A wide variety of operative procedures has been described, but none has been shown to be notably superior to the others. Accurate reduction of the joint is easier when surgery is performed within the first two weeks after injury, when the ruptured ligamentous restraints can often be

repaired directly. Most techniques of reconstruction in the acute injury involve reduction of the joint, ligamentous repair and stabilization of the joint, whereas in most delayed reconstructions an excision of the lateral end of the clavicle is performed before reduction, with stability restored by ligamentous substitution⁽³⁾.

Surgical approach may be open or arthroscopic. The postoperative rehabilitation protocol varies for different techniques of reconstruction⁽¹²⁾.