

Role of Nuclear Imaging in Staging and Follow up of Lymphoma

Essay

Submitted for partial fulfilment of Master degree in Radiodiagnosis

By Yehia Omar Hussein Omar

M.B,B.CH Cairo University

Under supervision of

Dr. Eman Soliman Metwally

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Nivine Chalabi

Lecturer of Radiodiagnosis
Faculty of medicine
Ain Shams University

Radiodiagnosis Department
Faculty of Medicine Ain Shams University
2014

دورالتصوير النووى في تحديد مراحل ومتابعة سرطان الغدد الليمفاوية

رسالة مقدمة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

من

الطبيب / يحيى عمر حسين عمر

بكالوريوس الطب و الجراحة جامعة القاهرة

تحت إشراف

الدكتورة / إيمان سليمان متولي

أستاذ الأشعة التشخيصية جامعة عين شمس

الدكتورة / نيفين عبد المنعم شلبي مدرس الأشعة التشخيصية جامعة عين شمس

قسم الأشعة التشخيصية - كلية الطب جامعة عين شمس 2014

Acknowledgment

I would like to express my appreciation and gratitude to Prof. Dr. Eman Soliman Metwally, Professor of Radio diagnosis, Faculty of Medicine, Ain Shams University for giving me the opportunity to working under her supervision.

Furthermore, I have the greatest pleasure to deeply thank and value Dr. Nivine Chalabi, Lecturer of Radio diagnosis, Faculty of Medicine, Ain Shams University for her supervision and being a mentor for me.

A special thanks to my family, I am deeply grateful to them for their immense support, continuous motivation, and endless care.

Contents

Chapter Name			
Introduction a	nd aim of work		
Chap. (1)	CT Anatomical Consideration of Lymphatic System	4	
Chap. (2)	Pathology of Lymphoma	25	
Chap. (3)	Staging of Lymphoma	32	
Chap. (4)	Nuclear medicine imaging (Gallium, PET and PRT/CT) principle and examination	36	
Chap. (5)	Findings in Lymphoma with illustrative cases	76	
Summary and Conclusion		100	
References			
Arabic Summary			

List of Figures

Chap. (1): CT Anatomical Consideration of Lymphatic Sys	stem
---	------

Figure (1.2)	Title	_
Figure (1.2)		Page
1	Lymph and Lymph vessels	4
	General structure of lymph node	9
	CT images depict head & neck nodal stations.	12 & 13
	CT images depict head & neck nodal stations.	14
Figure (1.5)	lymph nodes in the Thorax	16 & 17
Figures (1.6 to 1.19)	Nodal stations in the abdomen	19, 20 & 21
Figure (1.20)	Lymph nodes of the pelvis	22
Figure (1.21)	showing locations of thymus	23
Chap. (2): Pathology o	f Lymphoma	
0 ()	Hodgkin lymphoma	27
Chap. (3): Staging of L	ymphoma	
HIGHTOLY II	MIP , PET images showing the four stages of lymphoma	35
Chap. (4): Nuclear medicine imaging (Gallium, PET and PET/CT) principle and examination		
Figure (4.1)		
Figure (4.2)	Examples of physiological distribution of 67Ga	41 and 42
Figure (4.2) I Figure (4.3)		41 and 42 49
Figure (4.2) I Figure (4.3) (Figure (4.4) I	distribution of 67Ga	
Figure (4.2) Figure (4.3) Figure (4.4) Figure (4.5) Figure (4.6)	distribution of 67Ga Uptake of FDG by body cells	49
Figure (4.2) Figure (4.3) Figure (4.4) Figure (4.5) Figure (4.6)	distribution of 67Ga Uptake of FDG by body cells Annihilation of positron Normal physiological FDG	49 51

Figure (4.9)	Brown fat uptake	68
Figure (4.10)	PET/CT fusion	72
Figure (4.11)	PET/CT images with different	73
Figure (4.11)	color mapping	73
Figure (4.12)	Motion artifacts	74
Chap. (5): Finding in	es	
	Gallium imaging of the chest,	
Figure (5.1)	showing multiple bony	85
	metastasis	
Figure (5.2)	Gallium imaging of the chest	86
rigure (3.2)	showing mediastinal mass	00
Figures (5.3A &	PET/CT showing increased	
5.3B)	Splenic FDG uptake	87
0.00)		
	Unsuspected abnormal focus of	
Figure (5.4)	FDG uptake at the right lung	88
	hilum.	
Figure (5.5)	Abnormal focal uptake of FDG	88
8 ()	in the distal small bowel	
Figure (5.6)	Small involved right sided neck	89
	node, Axial CT, PET and fused PET/CT	
Figure (5.7)	showing FDG avid right pelvic	90
rigure (3.7)	lymphadenopathies	70
	Axial CT, PET and fused PET/CT	
Figure (5.8)	showing complete remission of	91
118410 (010)	the previously seen lesions	71
	Pre-therapy MIP and Post-	0.0
Figure (5.9A & 5.9B)	therapy	92
F: (F 10)	MIP PET images showing	02
Figure (5.10)	gastric lymphoma	93
	Coronal images of CT, PET and	
Figure (5.11)	fused PET/CT showing	94
	enlarged pelvic	
	lymphadenopathies	
	Axial images of CT, PET, and	95

Figure (5.12)	fused PET/CT showing enlarged pelvic lymphadenopathies	
Figure (5.13)	Axial images of CT, PET, and fused PET/CT showing the same lesion after 3 months	95
Figure (5.14)	Axial images of CT, PET, and fused PET/CT showing the same lesion after another 3 months	96
Figure (5.15)	MIP of PET/CT following chemotherapy showing progressive disease	97
Figure (5.16)	Axial images of CT, PET, and fused PET/CT showing Small sub capsular liver deposit missed on CT	98
Figure (5.17)	Axial images of CT, PET, and fused PET/CT showing Subtle left axillary node missed on CT	98
Figure (5.18)	Axial images of CT, PET, and fused PET/CT showing Muscular deposit within the left medial muscle not noted on CT	99
Figure (5.19)	Axial images of CT, PET, and fused PET/CT showing 5uscular deposit within right iliacus muscle missed on CT	99

List of Graphs

Chap. (5): Findings in Lymphoma with illustrative cases

endp. (e): 1 menings in =ymphonia inter measure endre		
	Title	Page
Graph (5.1)	Comparison between 3 PET/CT exams over 6 month's interval.	96

List of Tables

Chap. (2): Pathology of Lymphoma

Table (2.1) Table (2.2)	the main differences between HL and NHL	26
Table (2.3)	The 2008 WHO classification of lymphomas	29, 30 & 31
Chap. (3): Staging of	Lymphoma	
Table (3.1)	The Cotswold's staging classification	32 and 33
Table (3.2)	Staging procedures for lymphoma	34
Chap. (5): Finding in Lymphoma with illustrative cases		
Table (5.1)	Summarizes the most common patterns of FDG avidity among the various histological subtypes of Hodgkin disease and NHL.	78
Table (5.2)	FDG versus Ga scintigraphy	79
Table (5.3)	Sensitivity and specificity of PET/CT and contrast enhanced CT for staging, restaging and detection of extra nodal lymphoma in NHL and Hodgkin's disease	80
Table (5.4)	Changing in lymphoma staging with FDG PET/CT	80
Table (5.5)	Response definition in following up lymphoma by PET/CT	83
Table (5.6)	Recommendations for use of FDG-PET in patients with Lymphoma	84

List of Abbreviations

Abbreviations

MALT	Mucosa-associated lymphoid tissue
GALT	Gut-associated lymphoid tissue
BALT	Bronchus-associated lymphoid
HL	Hodgkin lymphoma
HD	Hodgkins disease
NHL	Non-Hodgkin Lymphoma
EBV	Epstein-Barr virus
WHO	World health organization
RS	Reed-Sternberg giant cells
NK	Natural killer cells
DLBCL	Diffuse large B-cell lymphoma
MZL	Marginal zone B-cell lymphoma
AIDS	Acquired immunodeficiency syndrome

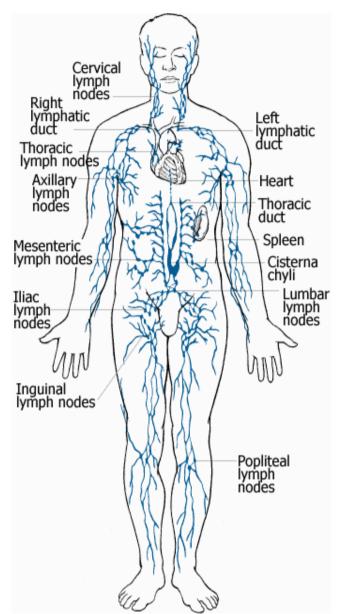
67Ga	Gallium
СТ	Computed tomography
MRI	Magnetic resonance imaging
CSGF	Colony stimulating growth factor
PET	Positron Emission Tomography
FDG	Fluorodeoxyglucose
LOR	Line of Response
AC	Attenuation correction
SUV	Standardized Uptake Value
ROI	Region of interest
SUR	Standardized Uptake Ratio
SPECT	Single Photon Emission Computed Tomography
MBQ	Mega Becquerel
LSO	Lutetium Orthosilicate
GLUT	Glucose Transporter

Introduction

Hodgkin's disease (HD) and non-Hodgkin's lymphoma (NHL) are lymphoproliferative disorders representing fewer than 8% of all malignancies but whose incidence has recently been rising by 3%–5% per year. These malignancies are potentially curable with current treatment modalities, even in advanced or recurrent disease. The prognosis and survival of patients with lymphoma depend on 3 key points, 2 of which are determined at the moment of diagnosis: histologic grade and clinical stage. The third is response to treatment. Precise staging is crucial to the proper selection of therapy for these patients, to prevent over- or under treatment(*Rodríguez*, 2006)

Advances in imaging techniques have improved the assessment of disease status and evaluation of the efficacy of different treatment modalities. While computed tomography remains the cornerstone of imaging for the assessment of disease status, it provides no understanding of the metabolic or functional parameters of the disease. Nuclear medicine techniques permit the evaluation of functional status, and nuclear medicine is likely to have its greatest impact in the detection of viable tumour in persistent masses. Nuclear imaging can be conducted using single photon agents, such as 67 Ga-citrate with SPECT (single photon emission computed tomography), or with positron emitters, such as 18 F-Fluorodeoxyglucose (FDG) with PET (positron emission tomography). (*Divgi*, 2005)

PET is a non-invasive, 3-dimensional, metabolic imaging technique that uses radiopharmaceutical to target a specific physiologic process. The most widely used pharmaceutical is the radio-labelled glucose analogue fluorine-18-deoxyglucose (FDG). PET reveals aspects of tumour function and allows metabolic measurements. Subtle findings at FDG PET that might otherwise be disregarded or interpreted as physiologic variants may lead to detection


of a malignant process. Accurate interpretation of FDG PET scans requires a thorough knowledge of the normal physiologic distribution of FDG and of normal variants that may reduce the accuracy of PET studies (*Seam et al.*, 2007).

PET/CT scanners allow enhanced localization of fluorinated deoxyglucose uptake, improving both sensitivity and specificity and making current PET/CT scanners highly accurate providing helpful guidance for the management of lymphoma at several points in the patient's overall assessment and treatment, including staging, monitoring disease response during treatment, and determining completeness of treatment response at the end of the planned intervention. PET/CT scanning may also provide useful information concerning prognosis both during primary treatment and during secondary treatment for relapsed or refractory disease (Connors, 2011).

Aim of Work

The aim of this work is to highlight the role of nuclear imaging in Lymphoma namely the initial diagnosis and precise staging; identification of suitable sites for biopsy; assessment of response to therapy and identification of recurrent diseas

CT Anatomical Consideration of

Lymphatic System

1-Lymph and Lymph Vessels

What is lymph?

Lymph is Excess interstitial fluid and solutes are returned to the bloodstream through a series of lymphatic vessels. When the combination of interstitial fluid, solutes and sometimes foreign material enters the lymph vessels, the liquid mixture is called lymph.

The network of increasingly larger vessels responsible for transporting lymph back to the venous circulation is composed of the following (from the smallest to largest in diameter): capillaries, lymphatic vessels, lymphatic trunks and

lymphatic ducts. (Mckinley and O'Loughlin, 2006). (Fig(1.1)).