SUPERVISORS

Prof. Dr. Alaa Aboul Ela

Professor of Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

Prof. Dr. Mona Mahmoud

Professor of Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

Dr. Nadia Soliman

Associate Professor
Oral and Dental Medicine Research
National Research Center

Dr. Amany El-Hadary

Associate Professor of Prosthodontics Faculty of Dentistry October University

البلازما الغنية بالصفائح كمساعدة لغرسات الأسنان الفورية الداعمة للأطقم الفوقية فى الفك السفلى لمرضى السكر

رسالة مقدمة من

الطبيبة/ إيمان مصطفى أحمد إبراهيم

ماجستير الاستعاضة الصناعية - جامعة القاهرة باحث مساعد المركز القومي للبحوث

توطئة للحصول على درجة الدكتوراه في الاستعاضة الصناعية

> كلية طب الفم والأسنان جامعة القاهرة

Platelet-Rich Plasma as an Adjunct for Immediate Implants Supporting Mandibular Overdentures in Diabetic Patients

Thesis

Submitted to the Faculty of Oral and Dental Medicine, Cairo University in Partial Fulfillment of the Requirements For Doctor Degree in Removable Prosthodontics

By

Eman Mostafa Ahmed Ibrahim M.D.S. Cairo University Assistant Researcher, National Research Center

> Faculty of Oral and Dental Medicine Cairo University

> > 2009

المشرفسون

أ.د / آلاء أبسو العسلا

أستاذ الاستعاضة الصناعية كلية طب الفم والأسنان جامعة القاهرة

أ.د/ مسنى محمسود

أستاذ الاستعاضة الصناعية كلية طب الفم والأسنان جامعة القاهرة $egin{align} egin{align} egin{align} egin{align} egin egin{align} egin{align} egin{align} egin{align} egin{align} egin{align} egin{align} egin{align} egin egin egin{align} \egin{align} egin{align} e$

أ.د.م/ ناديـة سليمـان

أستاذ باحث مساعد بحوث طب وجراحة الفم والاسنان المركز القومى للبحوث

أ.د.م / أمانسي الحضري

أستاذ مساعد الاستعاضة الصناعية كلية طب الفم والأسنان جامعة أكتوير

Ten male diabetic patients having only mandibular canine or premolar on each side were selected. Immediate implants were inserted and platelet – rich plasma was introduced with only one implant. After three months the implants were loaded by over denture. It was found that bone density was increased around both implants and more increase was with platelet-rich plasma before loading. Bone height was decreased and the peri-implant probing depth was increased around both implants.

أختير عشرة مرضى البول السكري لديهم فقط ناب أوضاحك في كل ناحية من الفك السفلي وتم غرس الدعامتين الفورتية في نفس المكان ووضعت البلازما الغنية بالصفائح قبل غرس واحدة فقط من الدعامتين مباشرة. ثم حُملت الأطقم بعد ثلاثة أشهر. وجد أن كثافة العظم تزداد حول الدعامتين وكانت الزيادة أكبر مع البلازمات الفنية بالصفائح وذلك في فترة ما قبل التحميل. أما ارتفاع العظم نقص حول الدعامتين وكذلك زاد عمق الجسر بالمسبر حولهما.

Acknowledgement

First of all I would like to thank God, who guided my way throughout this study. It is only by his will that every thing can be achieved.

Then, I would like to express my sincere gratitude and thanks to **Prof. Dr. Alaa Aboul Ela,** Professor of Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, whose support, guidance and encouragement were of great value to me. Through her kind interest and valuable leader-ship this work was finally achieved.

My deep gratitude is also extended, to **Prof. Dr. Mona Mahmoud**, Professor of Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University. Her suggestions, directions and valuable advice were extremely helpful for the progress of this work.

I would like also to express my deepest thanks to **Dr. Nadia Soliman**, Associate Professor, Oral and Dental Medicine Research, National Research Center, for her support, valuable comments and for time she spent in revising this work.

I can't forget **Dr. Amany El-Hadary**, Associate Professor of Proshodontics, Faculty of Dentistry, October University, who provided me with kind instructions, guidance and understanding. She was actually the one, who brought up the idea of this research.

Also I would like to express my thanks to Mr. Diaa Eldeen Hassan, Dental Technician, for his help in the laboratory work.

I would like to express my sincere thanks to my parents. I derived great strength from their continuous prayers and encouragement.

In few words, I express my deepest gratitude and appreciation to my beloved husband **Dr. Ayman** and my lovely daughter **Aya** for their love and generous support during the difficult times of this research

LIST OF CONTENTS

	Page	
Introduction		
Review of literature		
- Diabetes mellitus	2	
- Dental implants	8	
- Implant supported overdenture	18	
- Osseointegration	20	
- Platelet-Rich Plasma	29	
- Methods of evaluation	41	
Aim of the study		
Materials and methods		
Results		
Discussion		
Summary and conclusion		
Bibliography		
Arabic summary		

LIST OF FIGURES

Fig.		Page
1	One of the selected cases	57
2	Preoperative panoramic radiograph	59
3	The surgical stent with the stainless steel balls	60
4	Electric motor irrigation system	61
5	Essential surgical kit	62
6	Surgical accessory kit	63
7	Surgical instruments for flab reflection	63
8	Root form implant	64
9	The extracted canine and premolar	65
10	The extraction sockets	66
11	The surgical incisions	67
12	The flab after reflection	67
13	Drilling with the pilot drill	68
14	Drilling with the final drill	69
15	Handling of the uncovered implant	70
16	Hand screwing of the implant	71
17	Screwing of the implant using ratchet	71
18	Healing abutments screwed into the implants	72
19	Ten ml of autologous blood	73
20	The differential counter for platelet count	73
21	The centrifugal machine	74
22	Blood sample inside the centrifugal machine	74
23	Blood sample after the first centrifuge	75
24	Platelet-Rich Plasma (PRP)	76
25	PRP, thrombin and calcium chloride solution	77

Fig.		Page
26	Activated PRP	77
27	Introducing PRP into the implant bed	78
28	Two healing abutments covering the two implants	78
29	Suturing of the flab	79
30	Post operative view	80
31	Ball part of the attachment inside the patient	
	mouth	82
32	Tin foil on the male part of attachment	82
33	The Female part was seated on the male part	83
34	Female part of ball and socket attachment inside	
	the denture fitting surface	84
35	The sensor probe	85
36	The Digora System	86
37	Photographic demonstration of acrylic bite blocks	
	on the radiographic template	87
38	Patient positioning during imaging	88
39	Diagrammatic representation for densitometric	
	analysis distal to the implant	90
40	Bone density measurement	90
41	Diagrammatic representation for bone height	
	analysis distal to the implant	91
42	Comparison between the bone densities for both	
	sides before loading	94
43	Comparison between the bone densities for both	
	sides after loading	94
44	Changes in bone density by time through the pre-	
	loading period	97

Fig.		Page
45	Changes in bone density by time through the after-	
	loading period	97
46	Comparison between the percentage changes in	
	bone density	99
47	Comparison between the bone heights for both	
	sides before loading	100
48	Comparison between the bone heights for both	
	sides after loading	100
49	Changes in bone height by time through the pre-	
	loading period	102
50	Changes in bone height by time through the after	
	loading period	103
51	Comparison between percentage changes in bone	
	height	104
52	Comparison between the probing depth for both	
	sides	105
53	Changes in probing depth by time after loading	106
54	Comparison between percentage changes in	
	probing depth	107

LIST OF TABLES

Table		<u>Page</u>
1	Comparison between the bone density for both sides	93
2	Changes in the bone density by time for the implant side	95
3	Changes in the bone density by time for the implant with PRP side	96
4	Comparison between % changes in bone density of the. two sides	98
5	Comparison between the bone heights for both sides	99
6	Changes in the bone height by time for the implant side	101
7	Changes in the bone height by time for the implant with PRP side.	102
8	Comparison between % changes in bone height of the two sides.	103
9	Comparison between the probing depth for both sides	104
10	Changes in the probing depth by time for the implant side	105
11	Changes in the probing depth by time for the implant	10.5
12	with PRP side	106
	two sides.	107

Key words:

Platelet-rich plasma- immediate implants- overdentures- diabetic patients

REVIEW OF LITERATURE

Diabetes Mellitus

Diabetes mellitus (D.M) is metabolic disorder with wide variation in its prevalence rates among different populations and within the same population (**Traisman**, 1980).

It is a complex, multifactorial, genetically derived, endocrinal, chronic disease of metabolic deregulations' mainly of carbohydrate metabolism. It results from either insufficient insulin secretion from the β cells of the pancreas or from decreased tissue response to the circulating insulin (target-insulin resistance). This is attributed to weakness or decreased number of insulin receptors by (down regulation mechanism) or from both. It leads to increased blood glucose level and excretion of sugar in urine (hyperglycemia). Impairment in lipid and protein metabolism may also be encountered as a common characteristic in diabetes mellitus (Siperstein, 1975, Salvi et al., 1997 and Nathan, 1993).

The classic symptoms of the disease are polyurea, ketonurea, rapid weight loss and gross elevation of plasma glucose level above its renal threshold. Depending on the severity of metabolic abnormality, the disease may be asymptomatic or may progress to ketoacidosis and coma (Albert and Zimmet, 1998 and Kuzuya et al., 2002).

Retinopathy, nephropathy and micro-angiopathy, which produces thickening of capillary basement membranes in the blood vessels throughout the body are some of complications that may occur (**Kinane et al., 2001**).

Based on the stage, onset of the disease and degree of its of severity, a variety of descriptive terms were formerly used to classify diabetes. Ideal, the classification of diabetes should be based on its etiology and pathogenesis (Atkinson and Maclaren, 1990 and Brenner, 2003).

The most common classification of diabetes mellitus was presented by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, American Diabetes Association (A.D.A) (2000) and by the World Health Organization (W.H.O), Diabetes Mellitus (2002).

The A.D.A. classification (2000):

This classification was based on the pathophysiology of the disease rather than its treatment approaches.

- **Type 1:** formerly; insulin-dependant.
- **Type 2:** formerly; non-insulin-dependant.
- **Gestational (GDM):** is defined as any degree of glucose intolerance and was first recognized during pregnancy.

• Other specific types :

- Genetic defect in β cell function.
- Genetic defect in insulin action.
- Pancreatic disease or injuries.
- Endocrinopathies.
- Drug or chemically induced.
- Infections.
- Part of other genetic syndromes.
- Uncommon forms of immune mediated diabetes.

The W.H.O. classification (2002):

- **Type I:** Insulin dependant diabetes mellitus (IDDM).
- **Type II:** non insulin dependant diabetes mellitus (NIDDM).
- **Type III:** Gestational diabetes mellitus (GDM).

Type I diabetes (IDDM):

It was formerly called juvenile-onset diabetes because it manifests in childhood and adolescence, yet it may occur at any age. This type is characterized by destruction of the β cell of pancreas which leads to absolute insulin deficiency and systemic ketosis or acidosis may occur. It constitutes 5-15% of diabetic patients. Its onset is abrupt and the course is unstable and is difficult to control (**Rees et al., 1992 and Smith, 1987**).

IDDM is divided into:

a) Type I A/ immune mediated:

It is more common than type I B. In this type, one or more immune response is in linkage with disequilibrium in human leucocytic antigen (HLA). This may increase the susceptibility to β -cell to be damaged by interaction of environmental factors with specific cell membrane antigen. (Christopher et al., 1992).

Acquired environmental factors such as viruses and chemicals may superimpose on genetic factors and lead to cell mediated destruction of β -cells (**Ronald and Weir, 1994**).

b) Type I B/idiopathic:

These patients usually have associated endocrinal disease such as Hashinoto's thyroditis, Grave's disease, and primary gonadal failure. A non endocrinal disease may also be encountered such as pernicious anemia, celiac disease and myasthenia gravis (Locatto et al., 1993).

Type II diabetes (NIDDM):

It was formerly called maturity onset diabetes because it often occurs in midlife or later. It is a condition of impaired insulin function rather than insulin deficiency. It results from defects in the insulin