COMPARATIVE STUDY BETWEEN BREAST ULTRASOUND, CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY AND 3D DIGITAL TOMOSYNTHESIS AS COMPLEMENTARY TECHNIQUES TO MAMMOGRAPHY IN DENSE BREAST PARENCHYMA

Thesis

Submitted for partial fulfillment of MSc. Degree in Radiodiagnosis

Presented by

Menna-T-Allah Mohamed Hanafy

M.B.B.Ch, Faculty of Medicine-Cairo University

Supervised by

Prof. Dr. Rashaa Mohammed kamal

Prof. of Radiology

Faculty of Medicine - Cairo University

Dr. Ayda Aly Youssef

Lecturer of Radiology

National cancer institute - Cairo University

Dr.Heba Mounir Azzam

Lecturer of Radiology

Faculty of Medicine - Cairo University

Faculty of Medicine Cairo University

2015

First and foremost, thanks to Allah, the most beneficial and most merciful. It is but for His mercy that we can put through in life.

I am greatly indebted to **Prof. Dr. Rashaa Mohammed Kamal**, Professor of Radiology, Cairo University; for her great help, outstanding support and overwhelming kindness, and for her extreme patience, persistent guidance and understanding. She enlightened my path and guided my footsteps through many obstacles. I really owe her much.

I am also very grateful to **Dr. Ayda Aly Youssef** lecturer of Radiology, National cancer Institute, Cairo University, for her meticulous supervision, sincere encouragement, valuable criticism, and kind guidance throughout the whole work.

My deepest thanks is to **Dr.Heba Mounir Azzam** lecturer of Radiology, Faculty of Medicine, Cairo University for her support, simplicity in handling matters, stimulating suggestions, and encouragement.

I must extend my warmest gratitude to all professors and lecturers of Women imaging unit, for their extended support and encouragement.

And last but certainly not least, My heartful thanks to all my family members, for their assistance, encouragement, patience and support throughout my work.

Finally, many thanks are due to my friends and fellow colleagues in the Radiology Department. Their support and encouragement had certainly been overwhelming.

Abstract

Women with dense breast are doubly disadvantaged as they are both at higher risk of developing breast cancer and at greater risk that cancer will not be detected. FFDM is accused of having a low sensitivity because the overlapping breast tissue may hide an abnormality and this increases the number of false negative results. On the other hand it is accused of having a low specificity because the overlapping tissues may give the impression of a false abnormality large number of false positive results. The results of our study showed that Contrast Enhanced Spectral Mammography, Tomosynthesis and breast ultrasound have superior diagnostic accuracy than Mammography in dense breast parenchyma. Contrast Enhanced Spectral Mammography has a significant higher specificity while breast ultrasound has a significant higher sensitivity compared to other imaging modalities. Breast Tomosynthesis showed higher sensitivity and specificity than Mammography.

Key Words: Dense Breast Parenchyma, Mammography ,Breast Ultrasound, 3D Digital Tomosynthesis, Contrast Enhanced Spectral Mammography

Table of Contents

	Page
List of Abbreviations	I
List of Tables	Ш
List of Figures	V
Chapter1: Introduction and Aim of the Work	1
Chapter 2:Review of Literature	4
Chapter 2.1: Mammography	4
Chapter 2.2: Contrast Enhanced Spectral Mammography	16
Chapter 2.3: Tomosynthesis	28
Chapter 2.4: Breast Ultrasound	35
Chapter 2.5: Breast Density	46
Chapter 3: Patients and Methods	51
Chapter 4: Results	57
Chapter 5: Case presentation	79
Chapter 6: Discussion	113
Chapter 6: Summary and Conclusion	125
References	128
Arabic Summary	143

List of Abbreviations

2D: Two Dimensional

3D: Three Dimensional

ACR: American college of Radiology

BIRADS: Breast Imaging And Reporting Data System

BRCA1 and 2: Breast Cancer gene 1 and 2

CCDs: charge coupled devices

CESM: Contrast Enhanced Spectral Mammography

CT: computed tomography

CC: Craniocaudal

CsI: Cesium iodide

DM: Digital mammography

DBT: Digital Breast Tomosynthesis

DCIS: Ductal carcinoma in situ

FDA: Food and Drug Administration

FFDM: Full field digital mammography

FN: False negative

FP: False positive

Gd202S Gadolinium oxysulfide

Hz: Hertz

IDC: Invasive Ductal Carcinoma

IV: Intravenous

Kev: Kilo electronvolt

KVP: kilovoltage Peak

MLO: Mediolateral Oblique

MRI: Magnetic resonance imaging

MGy: milligray

MHz: mega Hertz

PPV: Positive predictive value

SD: standard deviation

TFDs: thin film diodes

TFTs: thin film transistors

TN: True negative

TP: True positive

US: Ultrasonography

List Of Tables

		page
Patients and methods		
Table 3.1	BIRADS assessment categories according to	55
	BIRADS atlas 2013	
	Results	
Table 4.1	Age distribution of the patients participating in	57
	the study	
Table 4.2	Distribution of cases according to the ACR	58
	BIRADS lexicon breast density classification	
Table 4.3	Distribution of benign and malignant groups	59
	within the studied population according to	
	pathology and close follow up examination results	
Table 4.4	The distribution of different pathological entities	60
	within the "benign lesions" group	
Table 4.5	Mammography findings among studied lesions	62
Table 4.6	Benign and malignant mammography results for	63
	the studied population	
Table 4.7	TP,TN,FP and FN results of Mammography	64
Table 4.8	Benign and malignant CESM results for the	70
	studied population	
Table 4.9	TP, TN,FN and FP results of CESM	71
Table 4.10	Tommosynthesis findings among the studied	72
	population	
Table 4.11	Benign and malignant Tomosynthesis results for	73
	the studied population	
Table 4.12	TP ,TN, FP, and FN results of Tomosynthesis	74

Table 4.13	Benign and malignant Breast Ultrasound results	77
	for the studied population	
Table 4.14	TP,TN,FPand FN results of breast ultrasound	78

List Of Figures

No of Fig	Title	Page	
Chapter 2:Review of literature			
	Chapter 2.1:Mammography		
Fig 2.1.1	Comparison of image quality between film screen versus	9	
	digital mammography		
Fig 2.1.2	Diagram of screen and Digital Mammography	10	
Fig 2.1.3	Malignant masses on mammography	11	
Fig 2.1.4	Morphological appearance of benign calcifications	13	
Fig 2.1.5	Morphological appearance of suspicious calcifications.	13	
Fig 2.1.6	Distribution of calcifications	14	
C	Chapter 2.2: Contrast Enhanced Spectral Mammography		
Fig 2.2.1	Imaging procedure of Temporal subtraction CESM	19	
Fig 2.2.2	Technique of Dual energy CESM	20	
Fig 2.2.3	DECM image acquisition	22	
Fig 2.2.4	Case of equivocal findings	24	
Fig 2.2.5	Case of occult lesion in dense breast	25	
Fig 2.2.6	Case of IDC with loco regional metastasis	25	
Fig 2.2.7	Suspicious postoperative findings	26	
	Chapter 2.3:Tomosynthesis		
Fig 2.3.1	Digital Tomosynthesis	29	
Fig 2.3.2	Mediolateral oblique conventional mammogram of a	31	
	patient with invasive ductal cancer		
Fig 2.3.3	Better assessment of lump margins by DBT	32	
Fig 2.3.4	Detection of addition lesions by DBT	32	

Fig 2.3.5	Conventional CC digital mammogram (A) and	34
	tomosynthesis thick slab image (B) of microcalcifications	
	proven to represent ductal carcinoma in situ	
	Chapter 2.4:Breast Ultrasound	
Fig 2.4.1	Position of patient during breast ultrasound	36
Fig 2.4.2	Breast parenchyma during reproductive stage by US	38
`	Breast parenchyma in premenopausal stage by US	39
Fig 2.4.4	Simple cyst	40
Fig 2.4.5	Complicated cyst	40
Fig 2. 4.6	Fibroadenoma by ultrasound	41
Fig 2.4.7	Malignant lesions by ultrasound	42
Fig 2.4.8	evaluation of microcalcifications by ultrasound	44
Fig 2.4.9	Mammographic occult cancer detected at screening US	44
Fig 2.4.10	Axillary lymph node assessment by ultrasound	45
Chapter 2.5:Breast density		
Fig 2.5.1	ACR A: entirely fatty breast	46
Fig 2.5.2	ACR B: scattered fibroglandular tissues	47
Fig 2.5.3	ACR C: heterogeneously dense breast	47
Fig 2.5.4	ACR D: heterogeneously dense breast	48
Fig 2.5.5	Breast density is classified according to the denser	48
	breast	
Chapter 4:Results		
Fig 4.1	Distribution of cases according to the ACR BIRADS	58
	lexicon breast density	
Fig 4.2	Distribution of benign and malignant groups within the	59
	studied lesions	
Fig. 4.3	The distribution of the different pathological entities	60
	within the "benign lesions" group	

Fig 4.4	The distribution of the final diagnoses within the "malignant lesions" group	61
Fig 4.5	Mammographic findings among studied lesions	62
Fig 4.6	Benign and malignant mammography results for the studied population	63
Fig 4.7	Distribution of contrast uptake pattern among studied lesions	65
Fig 4.8	Distribution of mass and non mass lesions among enhancing lesions	65
Fig 4.9	Distribution of benign and malignant diagnosis among enhancing and non enhancing lesions	66
Fig 4.10	Margins of enhancing mass lesions	66
Fig 4.11	Pattern of enhancement among mass enhancing lesion	67
Fig 4.12	Intense of enhancement among enhancing mass lesions	67
Fig 4.13	Pattern of distribution of enhancing non mass lesions	68
Fig 4.14	Pattern of enhancement among non mass enhancing lesion	69
Fig 4.15	Intensity of enhancement among non mass enhancing lesions.	69
Fig 4.16	CESM results among studied population	70
Fig 4.17	Distribution of lesions among studied population according to Tomosynthesis findings.	72
Fig 4.18	Benign and malignant Tomosynthesis results for the studied population	73
Fig 4.19	Mass shape by ultrasound	74
Fig 4.20	Margin of mass lesions by ultrasound	75
Fig 4.21	Mass echogenicity by ultrasound	75

Fig 4.22	posterior acoustic effect of mass lesions by ultrasound	76
Fig 2.23	Ultrasound findings of non mass lesions	76
Fig 4.24	Benign and malignant ultrasound results for studied	77
	lesions.	
	Chapter 5: Case presentation	
Fig 5.1.a	Mammography MLO view	79
Fig 5.1.b	Mammography CC view	79
Fig 5.1.c	CESM MLO view	80
Fig 5.1.d	CESM CC view	80
Fig 5.1.e	Tomosynthesis of the left breast MLO	81
Fig 5.1.f	Breast Ultrasound	81
Fig 5.2.a	Mammography MLO view	82
Fig 5.2.b	Mammography CC view	82
Fig 5.2.c	CESM MLO view	83
Fig 5.2.d	CESM CC view	83
Fig 5.2.e	Tomosynthesis of the right breast MLO view	84
Fig 5.2.f	Breast Ultrasound	85
Fig5.3.a	Mammography MLO view	86
Fig5.3.b	Mammography CC view	86
Fig5.3.c	CESM MLO view	87
Fig5.3.d	CESM CC view	87
Fig 5.3.e	Tomosynthesis of the right breast MLO view	88
Fig5.3.f	Breast Ultrasound	88
Fig 5.4.a	Mammograpy MLO view	89
Fig5.4.b	Mammography CC view	89
Fig5.4.c	CESM MLO view	90
Fig 5.4.d	CESM CC view	90
Fig 5.4.e	Tomosynthesis of the right breast MLO view	91

Fig5.4.f	Tomosynthesis of left breast MLO view	91
Fig5.4.g	Breast Ultrasound	92
Fig5.5.a	Mammography CC and MLO views of the left breast	93
Fig 5.5.b	CESM CC and MLO views of the left breast	94
Fig5.5.c	Tomosythesis MLO views of the left breast	94
Fig5.5.d	Breast Ultrasound	95
Fig5.6.a	Mammography MLO view	96
Fig5.6.b	Mammography CC view	96
Fig5.6.c	CESM MLO view	97
Fig5.6.d	CESM CC view	97
Fig5.6.e	Tomosynthesis of the right breast MLO view	98
Fig5.6.f	Breast Ultrasound	98
Fig5.7.a	Mammography MLO view	99
Fig5.7.b	Mammography CC view	99
Fig 5.6.c	CESM MLO and CC views	100
Fig 5.7.d	Tomosynthesis of the left breast MLO view	100
Fig5.7.e	Breast Ultrasound	101
Fig5.8.a	Mammography MLO view	102
Fig5.8.b	Mammography CC view	102
Fig 5.8.c	CESM MLO view	103
Fig 5.8.d	CESM CC view	103
Fig 5.8.e	Tomosynthesis of the left breast MLO view	104
Fig 5.8.f	Tomosynthesis of the right breast MLO	104
Fig5.8.g	Left breast Ultrasound	105
Fig5.8.h	Right breast Ultrasound	105
Fig 5.9.a	MammographyMLO view	106
Fig 5.9.b	Mammography CC view	106
Fig5.9.c	CESM MLO view	107

Fig5.9.d	CESM CC view	107
Fig 5.9.e	Tomosynthesis of the left breast MLO view	108
Fig 5.9.f	Breast Ultrasound	108
Fig 5.10.a	Mammography MLO view	109
Fig 5.10.b	Mammography CC view	109
Fig 5.10.c	CESM MLO view	110
Fig 5.10.d	CESM CC view	110
Fig 5.10.e	Tomosynthesis of the right breast MLO view	111
Fig 5.10.f	Tomosynthesis of the left breast MLO view	111
Fig 5 .10.g	Breast Ultrasound	112

Chapter 1: Introduction

Breast cancer in women is a major public health problem throughout the world. It is the most common cancer among women both in developed and developing countries, accounting for 22.9% of all new female cancers. In Egypt breast cancer accounts for 37.7% of the total new cancer cases and it is the leading cause of cancer related mortality accounting for 29.1% of the cancer related deaths (*Zeeneldin et al.*, 2013).

To reduce the morbidity and mortality associated with breast cancer, early detection becomes a very important job. If the cancers could be diagnosed through regular breast cancer examinations at an earlier stage than is currently possible, the survival rate within 5 years would increase to about 95% (*Chang et al.*, 2008). Mammography is the basic breast imaging modality for early detection and diagnosis of breast cancer (*Van den Biggelaar et al.*, 2009).

Full Field Digital Mammography developments have been rapid, enabling high-quality breast images with higher contrast resolution, an improved dynamic range, and rapid processing of data and images when compared with Screen Film Mammography. However, some limitations still persist (*Dromain and Balleyguier*, 2010).

One of the genuine limitations of mammography is its use in dense breasts. This remains true even for Digital Mammography, although slightly better than in Screen Film Mammography (*Park*, 2009).

Mammography has low sensitivity and specificity in women with radiographically dense breast due to decrease contrast between a possible tumour and surrounding