

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BIIIN

ASSESSMENT OF THE VALUE OF TREATMENT OF ANEMIA IN CHRONIC RENAL FAILURE PATIENTS ON REGULAR HEMODIALYSIS BY INTRAVENOUS IRON

Thesis

Submitted to the Medical Research Institute Alexandria University For partial fulfillment of the Requirements of the degree of

Master of Applied Medical Chemistry

By

Saber Hamed Abd El-Gawad Mostafa

B. Sc. Chemistry Ain Shams University 1994

Medical Research Institute Alexandria University

SUPERVISORS

Prof. Dr. Zienat Abd El-Fattah El-Kholy

Prof. of Applied Medical Chemistry Medical Research Institute Alexandria University

Prof. Dr. Usama Abd El-Azeim Sharaf El-Deen

Prof. of Internal Medicine Faculty of Medicine Cairo University

Prof. Dr. Inas Ismail Rafat

Prof. of Clinical Pathology and Immunology
Faculty of Medicine
Cairo University

Dr. Mohamed Ahmed Abdel Mohsen

Lecturer of Applied Medical Chemistry Medical Research Institute Alexandria University

ACKNOWLEDGEMENTS

Praise be to God, Most gracious, Most merciful and Most generous

Thanks to *ALLAH*, most merciful compassionate. Without his help, nothing could be achieved.

I wish to express sincere gratitude to *Prof. Dr. Zienat Abd El-fattah El-Kholy*, Prof. of Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, she has generously denoted much of her time to achieve this work, and revision offers, without her ideas, efforts, guidance and cooperation, this work will not be done.

It is a pleasure to express my deepest regards, indebtedness and gratitude to *Prof. Dr. Usama Abd El-Azeim Sharaf El-Deen*, Prof. of Internal Medicine, Faculty of Medicine, Cairo University, for his suggestion of the idea of the work, guidance, encouragement and advise. His unlimited support was undoubtedly.

I would like to present plentiful thanks to *Prof. Dr. Inas Rafat*, Prof. of Clinical Pathology and immunology, Faculty of Medicine, Cairo University, for her willing help throughout this work. I am especially indebted to his valuable effort in revision offers.

I would like to thank *Dr. Mohamed Ahmed Abdel Mohsen*, Lecturer of Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, for his skillful guidance. I just wish to express my genuine appreciation for his continuous encouraging and support.

Lastly, I would like to thank my family, for their support, guidance, sincere invocation and encouragement.

List of abbreviations

ARF Acute renal failure

BUN Blood urea nitrogen

 B_{12} Vitamin B_{12}

CRF Chronic renal failure

CAPD Continuous ambulatory peritoneal dialysis

DNA Deoxyribonucleic acid

DMTI Divalent metal transporter I

EDTA Ethylenediamine tetra-acetic acid

ESRD End stage renal disease

EPO Erythropoietin

Fe Iron

FeOOH Ferric oxyhydroxide

HCT Hematocrit

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

MEIA Microparticle enzyme Immunoassay

Mn Mononuclear

PIT Plasma iron turnover

PTH Parathyroid hormone

RBCs Red blood cells

r-HuEPO Recombinant human erythropoietin

TIBC Total iron binding capacity

Contents

✓ Introduction.	Page No. I
❖ Normal iron metabolism.	4
Iron metabolism in hemodialysis patients.	26
❖ Iron deficiency Anemia.	44
❖ Iron supplements (therapy).	53
Aim of the work.	59
	60
< Results.	70
← Discussion.	96
	106
∢ References.	109
∢ Arabic summarv.	

INTRODUCTION

Introduction

Renal failure is the cessation of renal function, resulting in biochemical, metabolic, fluid, electrolyte and acid-base derangement in the individuals internal environment that seriously threaten life. (1)

There are two types of renal failure that can be differentiated by their definitions, etiologies and clinical courses or disease progression: acute and chronic renal failure.⁽¹⁾

a. Acute renal failure:

Acute renal failure (ARF), a term used to describe any disorder characterized by a rapid decline in renal function. (2)

The ability of the kidney to excrete nitrogenous wastes and to regulate the composition of the body internal milieu require:

- 1. Renal perfusion to be maintained at a level that ensures near normal rates of glomerular ultrafiltration and tubule ion and fluid transport.
- 2. Intrinsic renal cell functions to be intact.
- 3. The urine so formed to encounter no limitation in its passage through the lower urinary tract, including the final phases of micturition.⁽¹⁾

b. Chronic renal failure:

Chronic renal failure (CRF) is a continuous process that begins when some nephrons are lost and ends when the remnant nephron population can no longer sustain life.⁽²⁾

Many etiologies can result in chronic renal failure, most can be classified as belonging to one of the following nine categories: glomerular disease, tubular disease, vascular disease, infectious diseases, obstructive disease, collagen disease, metabolic renal disorders, congenital diseases and neoplastic disease. (2)

The clinical course of chronic renal failure progresses gradually and the patient is often unaware that there is a problem until very late in the process. The disease progresses through four phases of functional deterioration including diminished renal reserve, renal insufficiency, renal failure and the uremic syndrome. During the third phase, renal failure, the patient usually recognizes that there is a problem.⁽²⁾

Clinical use of dialysis:

When patients develop end-stage kidney disease, there are a number of treatment modalities available. Hemodialysis is presently the most commonly used treatment for these patients. It is usually performed in a dialysis unit as 3 to 4 hour treatments three times weekly. The amount of dialysis per session and per week should be

tailored to each patient according to how much protein the patient ingests and his nutritional status in order to control the blood urea nitrogen (BUN) at optimal levels. (3)

Principles of dialysis:

Both hemodialysis and peritoneal dialysis can be used to remove or add small molecular weight solute from or to body fluid. The direction and rate of solute movement can be partially controlled by the composition of the dialysis fluid.⁽⁴⁾

Dialysis, by a combination of diffusion and ultrafiltration, can change both the composition and volume of body fluid. In hemodialysis, blood and artificial plasma-like fluids are pumped into a dialyzer; inside the dialyzer the blood and dialysis fluid are separated by an artificial membrane. To perform this procedure it is necessary to have access to the vascular system. This can be accomplished by acutely puncturing an artery or vein. Blood from the access site is anticoagulated (usually with heparin) to prevent clotting in the venous side of the access site.⁽⁴⁾

Normal iron metabolism

All cells of living organisms require iron for the normal functions of a multitude of metabolic pathway. (5) It is a paradox of life on earth that iron is present in abundance throughout the planet, yet living organisms have great difficulty in extracting it. Therefore, organisms have developed highly conserved mechanism to preserve iron stores. (6) The content of iron in the human body is normally 3-4 g, corresponding to a concentration of 40-50 mg of iron/kg body weight. Women have a lower body content of iron than men. Most of the iron is found in essential iron compounds that are required for normal metabolism. About 60% of the iron is present in the form of hemoglobin in the circulating red blood cells and another 6 - 7 mg/kg occurs throughout the body in the form of myoglobin and several heme enzymes (cytochromes, catalases, peroxidases), as well as nonheme enzymes table (1).⁽⁷⁾ The value of iron in biochemical reactions is largely attributable to the ease with which it is oxidized and reduced. It can serve as a carrier for oxygen and electrons and in addition act as a catalyst for oxygenation, hydroxylation and other vital metabolic processes. For example, simple conversion of valence allows cytochromes readily to transfer electrons as part of oxidative phosphorylation.(8)