

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Rectangular Partially Prestressed High Strength Concrete Beams

By

Shady Hesham Abdelmohaimen Bakr Salem

B.Sc. 2009, Structural DivisionCivil Engineering DepartmentAin Shams University

Thesis
Submitted in partial fulfillment of the requirements of the degree of
MASTER OF SCIENCE

in

Civil Engineering (Structural)

Supervised by

Prof. Dr. Ahmed Sherif Essawy

Professor of Concrete Structures, Structural Department, Ain Shams University Dr. Tarek Kamal Hassan

Professor of Concrete Structures, Structural Department, Ain Shams University

Dr. Khalid Hilal Riad

Lecturer, Structural Department, Ain Shams University

Examiners Committee

Name, Title and Affiliation

PROF. ASHRAF HASSAN EL ZANATY

Professor of concrete structures Faculty of Engineering Cairo University

PROF. OSAMA HAMDY ABDELWAHED

Professor of concrete structures Faculty of Engineering Ain Shams University

PROF. AHMED SHERIF ESSAWY

Professor of concrete structures Faculty of Engineering Ain Shams University

DR. TAREK KAMAL HASSAN

Professor of concrete structures Faculty of Engineering Ain Shams University Signature

Terell-16 Uzse

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in partial

fulfillment of the requirements for the degree of Master of Science in Civil

Engineering (Structural).

The work included in this thesis was carried out by the author at

reinforced concrete laboratory of the faculty of Engineering, Ain Shams

Uviversity.

No part of this thesis has been submitted for a degree or qualification at

any other university or institute.

Date

: / / 2014

Name

Shady Hesham Abdelmohaimen Bakr Salem

Signature

Dedication

I dedicate the work and accomplishment in this thesis to the people who devoted their lives for making me a successful person, my Father and Mother. Gratitude and appreciation words cannot describe my feelings towards them.

Special dedication to my grandparents for their continuous encouraging wishes. Specially my grandfather Ali Abdelrahman, who passed away during my thesis preparation for acting as my role model during my whole life.

I would like to thank my sister for all the support and care she is always providing me.

Acknowledgement

I would like to express my sincere appreciation to the committee chair Dr. Ahmed S. Essawy for his guidance, support and continuous encouragement throughout this research work. Without his guidance and persistent help this dissertation would not have been possible.

I would like to express my gratitude to my supervisor Dr. Tarek K. Hassan for the useful comments, remarks and engagement through the learning process of this master thesis.

I would also like to express my heartfelt gratitude to Dr. Khaled M. Helal. The work presented herein could not have been done without his continuous support and advice.

I would like to extend my thanks to Dr. Amr A. Abdelrahman for his guidance through the whole research phases.

I would like also to thank my colleague Tarek H. Elhashimy for proving the real meaning of friendship and research assistance.

Abstract

In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility; it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams.

The experimental program was conducted on seven partially prestressed concrete beams with total length of 4800mm. The beams were simply supported with 4500mm clear span and 150mm projection at each end. All the beams were 150mm wide and 250mm deep for all the five rectangular sections. The web of the T-section

specimens was similar to the rectangular ones while flange widths were 350 and 550mm. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes. Strains at the bottom longitudinal reinforcement steel and concrete (top and reinforcement levels) were also measured so as to monitor the strain propagation across the concrete cross section

The research program developed an analytical approach to predict the behavior of the partially prestressed high strength beams under the studied parameters. The program based on rational and empirical methods available in the literature to model both deflection and crack width of partially prestressed high strength concrete. Failure modes and ultimate carrying capacity of the beams were predicted and then compared to the experimental values.

Table of Contents

Dedica	tion	1
Acknow	wledgment	ii
Abstrac	t	iii
Table o	f contents	v
List of	symbols	X
List of	tables	xvi
List of	figures	xvii
1 Inti	oduction	1
1.1	General	1
1.2	Research objectives	2
1.3	Scope of work and methodology	3
1.3	1 Experimental investigation	3
1.3	2 Analytical investigation	4
1.3	3 Design recommendations	4
1.4	Thesis outline	5
2 Lite	erature review	7
2.1	Introduction	7
2.2	High strength concrete (HSC)	8
2.2	Definition, Advantages and Disadvantages of HSC	8
2.2	2 Mechanical properties of high strength concrete	12
2.2	3 Design considerations for high strength concrete	19
2.3	Partially prestressed concrete	23
2.3	1 General	23
2.3	2 Definitions in partially prestressed concrete	27
2.3	.3 Cracked Section analysis	29
2.3	4 Short term deflection.	30
2.3	5 Cracking behavior	42
2.3	.6 Effective flange width	54

2	2.3.7	7 Ductility	55
2.4	ŀŀ	Prestressed high strength concrete beams	57
2	2.4.1	l General	57
2	2.4.2	2 Previous researches	57
2	2.4.3	3 Concluding statement	62
3 E	Ехре	erimental program	63
3.1	. (General	63
3.2	2 5	Specimens' design	63
3.3	8 N	Materials	69
3	3.3.1	l Concrete	69
3	3.3.2	2 Conventional reinforcement	71
3	3.3.3	3 Prestressing reinforcement	71
3	3.3.4	4 Grout	71
3.4	1 5	Specimen preparation	71
3.5	5 I	Instrumentation	85
3	3.5.1	The internal instrumentation	85
3	3.5.2	2 The external instrumentation	86
3.6	5	Specimen actual dimensions	89
3.7	7 I	Prestressing losses	96
3.8	3]	Test setup	98
3	3.8.1	1 The Test Setup	99
3	3.8.2	2 Loading mechanism	100
3	3.8.3	3 Loading criteria	102
4 T	Γest	results and discussion	104
4.1	. (General	104
4.2	2 F	Flexural behavior	104
4	1.2.1	1 R-0.264-70	106
4	1.2.2	2 R-0.264-40	107
Δ	123	3 R-0.264-90	108

4.2.4	R-0.373-70	109
4.2.5	R-0.528-70	110
4.2.6	T-0.264-70*	111
4.2.7	T-0.264-70**	112
4.3 Ca	mber measurements	113
4.4 Fa	ilure modes	113
4.5 St	rain distribution	115
4.6 Cr	acking behavior	119
4.7 Ef	fect of concrete compressive strength	124
4.7.1	Load-deflection	125
4.7.2	Strain distribution	127
4.7.3	Cracking behavior	128
4.8 Ef	fect of prestressing steel ratio	130
4.8.1	Load-deflection	130
4.8.2	Strain distribution	132
4.8.3	Cracking behavior	134
4.9 Ef	fect of flange width	136
4.9.1	Load-deflection	136
4.9.2	Strain distribution	138
4.9.3	Cracking behavior	139
5 Analy	tical program	141
5.1 Ge	eneral	141
5.1.1	Introduction	141
5.1.2	Analysis procedure	141
5.1.3	Cracking moment calculation	143
5.1.4	Failure criteria	144
5.2 M	aterial modeling	146
5.2.1	Concrete	146
5.2.2	Prestressing steel strands	146

5.2.1	Conventional reinforcement	147
5.3 C	racking and ultimate moment	149
5.4 D	eflection prediction	151
5.4.1	Integration of curvature	152
5.4.2	Simplified method	176
5.4.3	Source of deviation	181
5.4.4	Design recommendations	183
5.5 Ca	amber calculations	185
5.6 C	rack pattern prediction	187
5.6.1	Introduction	187
5.6.2	Influence of major parameters	188
5.6.3	Stress calculation at the conventional reinforcement	191
5.6.4	Crack width calculation	191
5.6.1	Design recommendations	205
5.7 D	uctility	206
5.8 A	pplicability of the Egyptian code of practice	208
6 Sumn	nary, conclusions and recommendations	209
6.1 St	ımmary	209
6.2 C	onclusions	210
6.3 R	ecommendations	212
Reference	S	213
Appendic	es	220
Appendix	A	221
Materia	l properties	221
Cours	e and fine aggregates:	222
Silica fume:		225
Chem	ical admixtures:	231
Conve	entional reinforcement	235
Grout		240

Sika® form oil	242
Appendix B	244
Donut load cell	244
Introduction	245
Definition of the load cells	245
Basic idea of the load cells	245
Components of the used load cell	247
Experimental program	249
Experimental Results & Observations	252
Appendix C	
Detailed results	257
Deflection	258
Cracking	272

List of symbols

Depth of the equivalent rectangular stress block in the compression azone of concrete section. Effective concrete tension area divided by number of bars or wires. A Concrete area in tension below neutral axis. A_r Cross sectional area of transformed cracked section. A_{cr} Area of longitudinal tension reinforcement within effective tension. $A_{\rm s}$ Area of effective concrete section in tension. A_{cef} Area of prestressing and equivalent conventional steel. A_{st} Area of prestressed reinforcement. A_{ps} Gross section area of concrete. A_g Area of non-prestressed reinforcement. A_{ns} Concrete cover cNeutral axis depth from the extreme compression fiber. c center-to-center distance of tensile reinforcements (mm). $C_{\rm s}$ Concrete cover to the center of reinforcement. d_{c} Depth of the prestressing reinforcement from the extreme d_p compression fiber. Eccentricity of prestressing force based on gross section properties. e Eccentricity of prestressing reinforcement with respect to neural e_{cr} axis of the transformed cracked section. Concrete modulus of elasticity. E_{c} EAS Conventional reinforcement modulus of elasticity.

E_{ps} Prestressing steel modulus of elasticity.

E_s Average modulus of elasticity for conventional and prestressing

steel reinforcement.

E_{total} Total energy.

E_{elastic} Elastic energy.

 $f_{\rm cu}$ Concrete characteristic cube compressive strength at 28days.

 $f_{\rm c}$ Concrete specified cylinder compressive strength.

 $f_{\rm cm}$ Mean value of concrete cylinder compressive strength.

 $f_{\rm ck}$ Concrete characteristic cylinder compressive strength at 28days.

 $f_{\rm ctm}$ Mean axial tensile strength.

 $f_{\text{ck,cube}}$ Concrete characteristic cube compressive strength at 28days.

 $f_{\rm r}$ Concrete average modulus of rupture.

 $f_{\text{ctm,fl}}$ Concrete average modulus of rupture.

 $f_{\text{ct,sp}}$ Concrete indirect tensile splitting strength.

 f_{ctr} Concrete tensile splitting strength.

 $f_{\text{ct,sp}}$ Concrete average modulus of rupture.

 f_{ps} Stress in the prestressing reinforcement at the ultimate stage.

 $f_{\rm c}$, Stress at any level of loading.

 $f_{\rm ps}$ Stress at the prestressing steel reinforcement.

 f_{ps} Stress at the prestressing steel reinforcement.

 f_y Yielding stress at prestressing and conventional reinforcement.

 $f_{\rm c}$, Stress at any level of loading.

 $f_{\rm sr}$ Stress in longitudinal steel at the tension zone, based on the

analysis of cracked section due to loads causing first cracking.

 f_{s} Stress in longitudinal steel at the tension zone, based on the analysis of cracked section under permanent load. h Total member depth Effective moment of inertia. I_{e} Gross moment of inertia. I_g I_{cr} Moment of inertia of the cracked section ignoring the concrete in tension. Effective moment of inertia for moment corresponding to a Ie_{L2} downward (net positive) deflection. kFactor to increase the decay of stresses. Ratio of the average compressive stress to the maximum \mathbf{k}_1 compressive stress. k_2 Ratio of the depth of the resultant compressive force to the depth of neutral axis. k_3 Ratio of the maximum compressive stress to the compressive strength of concrete cylinder. Coefficient depending on reinforcement bond properties. \mathbf{k}_1 Coefficient depending on strain distribution. \mathbf{k}_2 Coefficient depending on the reinforcement geometry. \mathbf{k}_1 Coefficient depending on the concrete quality. \mathbf{k}_2 Coefficient depending on the arrangement of reinforcement. k_3 Coefficient depending on the reinforcement type. \mathbf{k}_1 K coefficient depending on the support and loading conditions. L Effective length of the member.