

Ain Shams University Faculty of Education Physics Department

A Study of the Characteristics of Nuclear Track Detectors of types CR-39 and DAM-ADC for Nuclear Particles Registration

THESIS

Submitted in partial fulfillment of the requirement for the Master degree of Teacher preparation in science (Nuclear physics)

By
Osama Ashraf Youssef Abd elaziz

To
Physics Department
Faculty of Education
Ain Shams University
2014

بسم الله الرحمن الرحيم

﴿ يُؤْتِي ٱلْدِكْمَةَ مَن يَشَآءُوَمَن يُؤْتِ الْمِحْمَةَ مَن يَشَآءُوَمَن يُؤْتِ اللَّهِ اللَّهُ اللَّهِ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ال

حدى الله العظيم (البقرة: ٢٦٩)

Ain Shams University Faculty of Education Physics Department

Researcher Name: Osama Ashraf Youssef Abd elaziz

Title of the thesis: A Study of the Characteristics of Nuclear Track Detectors of types CR-39 and DAM-ADC for Nuclear Particles Registration

Submitted to: Physics Department, Faculty of Education, Ain Shams University

Supervisors:

1-Prof. Dr. Ashry Hassan Ashry

2- Dr. Mohssen Eissa Hafez

3-Dr. Yasser Saad Abd El-halem

Approval Sheet

Title:" A Study of the Characteristics of Nuclear Track Detectors of types CR-39 and DAM-ADC for Nuclear Particles Registration"

Candidate: Osama Ashraf Youssef Abd elaziz

Degree: Master degree of Teacher Preparation in Science

(Nuclear Physics)

Board of Advisors

Approved by

1. Prof. Dr/Ashry Hassan Ashry

Professor of Nuclear Physics Faculty of Education, Ain Shams University

2. Dr/Mohssen Eissa Hafez

Dr. of Nuclear Physics Faculty of Education, Ain Shams University

3. Dr/Yasser Saad Abd El-halem

Dr. of Nuclear Physics Faculty of science, Menofia University

Date of presentation: / /2014

Post graduate studies:

Stamp: / / Date of approval: / /2014

Approval of Faculty council: / /2014

Approval of university council: / /2014

Acknowledgement

The author wishes to present his deep thanks to Prof. Dr. Ashry Hassan Ashry, Prof. of Nuclear Physics faculty of Education, Ain shams University for his kind supervision, encouragement and advice during this work.

My utmost gratitude and deep thanks to Dr. Ayman Mohammed Abd El-Moaty, Assistant professor of Nuclear Physics Najran University for his kind supervision, and his continuous supervision and guidance throughout the present work and for suggesting the topic of research.

The author would like to express his deep thanks and gratitude to Dr. Yasser Saad Abd El-halem, Dr. of Nuclear Physics, faculty of science, Menofia University for his kind supervision, and her continuous supervision and guidance throughout the present work

The author would like to express his deep thanks and gratitude to Dr. **Mohsen Eissa Hafez**, Dr. of Nuclear Physics, faculty of education, Ain Shams University, for his kind supervision, encouragement during this work.

The author wishes to express his sincere gratitude to Prof.Dr. Adel Fawzy Ibrahim, Head physics department, faculty of Education, Ain Shams University for his encouragement and advice during this work

Sincere thanks are also to Dr. Ahmad R. El-sersy, professor of Radiation Physics, Department of Ionizing Radiation, National Institute for Standards (NIS), Giza, Egypt, for his fruitful help through this work.

Deepest gratitude to prof. Dr. **T. Tsuruta**, professor of Atomic Energy, Atomic Energy Research Institute, Kinki University, Osaka, Japan for valuable help and rendering DAM-ADC detector.

Finally it is great pleasure to thank all the members of nuclear physics laboratory in faculty of Education, Ain Shams University and faculty of science, El Menoufia University for their helps during the experimental work.

Dedication

TO My parents, brothers, my sister, and my lovely wife.

Contents

Toj	pic	Page
Ack	nowledgment	I
List	of Figures and Tables	VIII
List	of Abbreviation	XIV
Abs	tract	XV
СН	APTER 1	
The	eoretical background and literature rev	iew
1.1	Introduction	1
1.2	Interactions of Particle with Matter	3
	1.2.1 Excitation, Ionization, and Radiative	Losses 3
	1.2.2 Specific Ionization	4
	1.2.3 Charged Particle Tracks	6
	1.2.3.1. Light Charged Particles	6
	1.2.3.2. Heavy Charged Particles	s 6
	1.2.4 Path length and range	7
	1.2.5 Alpha Particle Range	9
	1.2.6 Proton Range	9
	1.2.7 Neutron Interactions	10
1.3	Criteria for Track Formation	11

	1.3.1 Stopping Power Due to Ionization and	
	Excitation.	11
	1.3.2 Total Rate of Energy Loss, dE/dX	12
	1.3.3 Primary Ionization	14
	1.3.4 Secondary Electron Energy Loss	15
	1.3.5 Restricted Energy Loss (REL)	15
1.4	Operation of Solid-State Nuclear Track Detector	17
	1.4.1 Some types of SSNTDs	20
	1.4.2 Advantages of SSNTDs	20
1.5	The Etching Parameters	22
1.6	Measurement of V _B	26
	1.6.1 Direct Measurement of V _B	26
	1.6.2 Indirect Measurement of V _B	27
1.7	Factors Affecting on V _B	28
	1.7.1 The Dependence of V _B on Etching Conditions.	29
	1.7.2 The Dependence of V _B on Irradiation of the Detector	30
1.8	Sensitivity of Solid State Nuclear Track Detector (V)	31
1.9	Critical angle (θ_c) .	32
1.10	Etching and Registration efficiency.	33

1.11	Registr	ration of Fast ne	utron.	33
	1.11.1	Enlargement o	f the protons recoil track	35
1.12	Measur Detecto		on Concentration with Trac	ck 36
1.13		asic Modes for l Frack Detector	Radon Measurements	39
	1.13.1	Radon Measu Detector	rements with Open	39
	1.13.2	Radon Measu Detectors	rements with Closed	40
1.14	Chemic	•	aqueous/alcoholic	43
1.15	Radiati	on Units		44
	1.15.1	Units of R	adioactivity	44
	1.15.2	Radiation ?	Exposure	45
		1.15.2.1.	Roentgen (R)	45
		1.15.2.2.	Roentgen Equivalent Physical (rep)	45
	1.15.3	Absorbed 1	Dose	45
	1.15.4	Equivalent	Dose	45
	1.15.5	Effective I	Oose	46
1.16	Literatu	ure Review		46
1 17	The Ma	ain Aim of This	Work	59

CHAPTER 2

Exp	erimental i echniques	
2.1	Preparation of Detectors	6
2.2	Radioactive Sources	64
	2.2.1 Alpha Emitter	64
	2.2.2 Fission Fragments Emitter	66
	2.2.3 Neutrons Emitter	67
2.3	Experimental Set Up	67
	2.3.1 Etching of Exposed Detectors	67
	2.3.2 Observation and Analysis of Tracks	68
	2.3.3 AB-5 monitor	69
	2.3.4 CPRD specification	70
	2.3.5 The AB-5 operation theory	72
	2.3.6 Radon Calibration Chamber	74
	2.3.7 (DTA) Differential Thermal Analysis	75
	2.3.8 (DSC) Differential scanning calorimetry	76
CH	APTER 3	
Res	ults and Discussion	
3.1	Introduction	79
3.2	CR-39 Detector.	84
3 3	DAM-ADC Detector	97

3.4	Appl	ications	of CR-39 and DAM-ADC SSNTDs	110
	3.4.1	Fast Ne	eutrons Detection	110
		3.4.1.1.	Materials and Sources	110
		3.4.1.2.	Irradiation Facilities	111
		3.4.1.3.	Measurements of The bulk Etching	
			Rate	112
		3.4.1.4.	Results and Discussion	113
	3.4.2	Radon C	Gas Concentration Measurements	121
		3.4.2.1.	Determination of Radon Half-life	
			Time Inside The chamber	121
		3.4.2.2.	Calibration of CR-39 Detector for	
			Radon Measurements	122
Conc	lusio	ns		126
Sumi	mary			130
Refe	rence	es		134
Arab	ic Su	ımmary	,	143

List of Figures and Tables

NO.	Figure & Table I	Page
Fig.1.1	Specific ionization as a function of distance from the end of range in air for a 7.69MeV alpha particle from (Po ²¹⁴)	5
Fig.1.2	a: Heavily charged particles, like alpha partic produce a dense nearly linear ionization track resulting in the path and range being essential equal.b: Path length of the electron being greater the its range.	i, lly
Fig.1.3	A latent track is formed through inorganic so	lid 18
Fig.1.4	The break of polymeric chains by the passage of the charged particles	18
Fig.1.5	Track formation	19
Fig.1.6	Various kinds of SSNTDs	22
Fig.1.7	Critical angle of etching	25
Fig.1.8	The natural radioactive series of (A) ²³⁸ U, (B) ²³² Th and (C) ²³⁵ U	38
Fig.1.9	Schematic diagram showing a diffusion chamber used for radon measurements [76]	41
Fig.2.1	materials used to form DAM-ADC detector plates.	63

Fig.2.2	polymerization steps	64
Fig.2.3	Arrangement of a detector and the standard source of Am-241 [3]	66
Fig.2.4	Schematic construction of the used etching equipment for track revelation	68
Fig.2.5	A light optical microscope attached to web digital camera.	69
Table.2.1	Specification of CPRD	71
Fig.2.6	A typical photograph of the AB-5 monitor and CPRD	72
Fig.2.7	Schematic diagram of a photomultiplier tube (PMT)	74
Fig.2.8	Radon calibration chamber [117]	75
Fig. 3.1	Variation of V_B with temperature at different amount of CH_3OH	85
Fig. 3.2	Variation of V_B with etching time (min) with different amounts of CH_3OH at $60^{\circ}C$	87
Fig. 3.3	Variation of $ln V_B$ and $1000/T$ with different amounts of CH_3OH	87
Fig. 3.4	Variation of ln V_T and 1000/T with different amounts of CH_3OH	89
Fig. 3.5	Variation of alpha particle track diameter with Energy at different removed layer (um) with	

	1ml CH ₃ OH at 60°C	91
Fig. 3.6	Alpha particle energy loss as a function of particle path length in CR-39 detector, data calculated using TRIM program [132]	91
Fig. 3.7	Etching efficiency as a function of alpha particles energy at different etching times	93
Fig. 3.8	Etching efficiency (η) as a function of alpha particles energy etched at different amounts of CH ₃ OH at 60 °C and comparison between it in previous work and this study	94
Fig. 3.9	Sensitivity as a function of alpha particles energy at different amounts of CH ₃ OH at 60°C for etching time 45min	95
Fig.3.10	Critical angle as a function of alpha particles energy at different amounts of CH3OH at 60 °C for etching time 45min	: 96
Fig.3.11	Typical optical images of alpha particles track on the CR-39 detector with alpha energies between 1 and 5 MeV	97
Fig.3.12	Typical optical images of fission tracks in the DAM-ADC detector with etching condition (8 ml of 10N NaOH +1 ml CH ₃ OH) at 60 °C and different etching time	99
Fig.3.13	Variation of V_B with etching time (min) at different temperatures for DAM-ADC detector with etching condition (8 ml of 10N NaOH \pm	

	1 ml CH ₃ OH)	100
Fig.3.14	Variation of V_B with etching time (min) at different temperatures for DAM-ADC detecto with etching condition (8 ml of 10N NaOH + 2ml CH ₃ OH)	r 100
Fig.3.15	Variation of V_B with temperature at different amounts of CH_3OH	101
Fig.3.16	Variation of $ln V_B$ and $1000/T$ at different amounts of CH_3OH	103
Fig.3.17	Etching efficiency (η) as a function of alpha particles energy at different temperature	103
Fig.3.18	Variation of alpha particle tracks diameter with energy at different removed layer for DAM-ADC detector with etching condition (8 ml of 10N NaOH +1 ml CH ₃ OH) at 60°C	105
Fig.3.19	Variation of sensitivity with alpha particle energy for new optimum etching conditions and previous etching condition [110]	106
Fig. 3.20	Critical angle as a function of alpha particles energy at different amounts of CH3OH at60°C for etching time 60min	C 107
Fig.3.21	Etching efficiency (η) as a function of alpha particles energy at different etching time	108
Fig.3.22	Etching efficiency (η) as a function of alpha	