APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY IN THE ANTERIOR SEGMENT OF THE EYE

Essay

Submitted for the Partial Fulfillment of the Master Degree in **OPHTHALMOLOGY**

Вγ

Omar Gamal Ali Elattar

(M.B.B.Ch)

Supervisors

DR. TAREK MOHAMMED ZAGHLOUL

Prof. of Ophthalmology

Faculty of Medicine- Banha University

DR. HAMDY AHMED EL-GAZZAR

Assist. Prof. of Ophthalmology
Faculty of Medicine-Banha University

DR. MOHAMMED RAMADAN EL-SAYED

Assist. Prof. of Ophthalmology

Faculty of Medicine-Banha University

Faculty of Medicine
Banha University
2009

كلية الطب جامعة بنها ٢٠٠9

بسم الله الرحمن الرحيم

﴿ اقرأ باسم ربك الذي خلق الإنسان من علق * اقرأ وربك الأكرم* الذي علم بالقلم * علم الإنسان مالم يعلم

صدق الله العظيم

سورة العلق الآية (١-٥)

ACKNOWLEDGMENTS

Thanks to "Allah" the merciful and for giving, for all gifts given to me.

I would like to express my deepest gratitude and appreciation to **DR. TAREK MOHAMMED ZAGHLOUL** Professor of ophthalmology, Faculty of medicine, Benha University for his valuable guidance and unlimited education.

I express my thanks to **DR. HAMDY AHMED EL-GAZZAR** Assistant professor of Ophthalmology, Faculty of Medicine, Benha University, and **DR. MOHAMMED RAMADAN EL-SAYED** Assistant professor of Ophthalmology, Faculty of Medicine, Benha University, for their honest assistance, outstanding effort, and fruitful suggestions that allowed me to accomplish this work.

I am indebted to my parents, my guiding light for every progress I make and every step I take and I do thank them for their intimate care during the entire work.

CONTENTS

	Page
o Introduction	1
 Aim of the Essay 	3
 Principles of Anterior segment OCT 	4
 Equipments of Anterior segment OCT 	16
 Applications of Anterior segment OCT: 	
•Tear film evaluation	21
•Corneal evaluation	24
•Corneal surgical procedures	36
•Glaucoma	52
•Crystalline lens and IOL	71
•Iris and Ciliary body	88
•Sclera	96
•Intra-operative OCT	98
o Summary	101
o References	104
 Arabic summary 	

LIST OF ABBREVIATIONS

AC	Anterior chamber
AC OCT	Anterior chamber Optical Coherence Tomography
ACD	Anterior chamber depth
ACG	Angle closure glaucoma
ALPI	Argon Laser Peripheral Iridoplasty
AS OCT	Anterior segment Optical Coherence Tomography
CAS OCT	Corneal anterior segment Optical Coherence Tomography
CBS	Capsular block syndrome
CCI	Clear corneal incision
CCT	Central corneal thickness
CD	Corneal diameter
CHC	Corneal hydration control
CLR	Crystalline lens rise
INTACS	Intra-stromal corneal segments
IOL	Intraocular lens
IOP	Intraocular pressure
LASIK	Laser insitu keratomileusis
LTK	Laser thermokeratoplasty
LPI	Laser peripheral Iridotomy
mm	millimeter
mW	milliwatt
nm	nanometer
OCT	Optical Coherence Tomography
PCO	Posterior capsular opacification
PDS	Pigment dispersion syndrome
PIOL	Phakic Intraocular lens
PRK	Photorefractive Keratectomy
PTK	Phototherapeutic Keratectomy
SEB	Scleral expansion band
US	Ultrasound
UBM	Ultrasound Biomicroscopy
WTW	White to white

	■ List of abbreviations

LIST OF FIGURES

Figure	Title	Page
1	Reflection of light and sound from the eye.	5
2	Image measurement using OCT.	7
3	Low coherence interferometry.	7
4	Optical coherence domain reflectometry measurement of ACD.	9
5	In vivo human AS-OCT.	15
6	Schematic of optical coherence reflectometry system.	17
7	Slit lamp adapted AS-OCT.	17
8	Visante OCT.	20
9	Hand held OCT.	20
10	High-magnification OCT images of tear film.	22
11	830 nm OCT image of rigid contact lens and tear film.	22
12	Measurements of thickness of contact lenses and the cornea with OCT.	23
13	830 nm OCT image of the central cornea.	25
14	Real-time image of the cornea.	25
15	OCT image showing Granular stromal Dysrophy.	28
16	Images of normal, dehydrated and over hydrated states of rabbit cornea in	28
	vivo.	
17	OCT light backscattering images of the central cornea before and after lens	30
	wear.	
18	A corneal pachymetry map.	32
19	Spot pachymetry through the center of the cornea.	32
20	Optical coherence tomography scan pattern for pachymetry mapping.	35
21	Cross-sectional optical coherence tomography (OCT) image from 1 of the 8	35
	radial line scans.	20
22	OCT image showing anterior and posterior radii of the cornea.	38
23	Hybrid method of corneal power calculation.	38
24	OCT of an eye 1 day after LASIK surgery.	41
25	830 nm OCT image of the cornea.	41
26	OCT 2-dimentional image of cornea 1 day after LASIK.	43
27	OCT of a human donor cornea that had LASIK.	46
28	OCT corneal ring measurement scheme.	49
29	OCT image showing Keratoconus scar.	49
30	OCT image showing Descemet's-stripping endothelial keratoplasties.	49
31	OCT image showing the corneal periphery including AC-angle.	51
32	OCT image of CCI that didn't receive stromal hydration.	51
33	830 nm and 1310 nm AS-OCT images showing angle anatomy.	53
34	AS-OCT image illustrating AC angle anatomy.	53

Figure	Title	Page
35	OCT images showing effect of bright illumination on AC angle.	55
36	AS-OCT of AC angle measurement.	55
37	1310 nm OCT image of an occludable angle of AC.	57
38	OCT Images of AC angle before and after LPI in pupillary block glaucoma.	57
39	AS-OCT image of AC Angle in plateau iris syndrome after LPI and ALPI in	59
	light and dark conditions.	
40	Anterior segment OCT image of neovascular glaucoma grade4.	59
41	OCT images of malignant glaucoma	61
42	Gonioscopy and OCT images of peripheral anterior synechia.	61
43	Side-by-side comparison of OCT and UBM images of the AC angle.	61
44	1310 nm OCT image of an open angle of AC.	63
45	OCT image of functioning filtering bleb.	65
46	Post-operative evaluation of filtering bleb.	65
47	OCT image of high successful bleb.	67
48	OCT image of failed bleb.	69
49	830 nm OCT image of crystalline lens.	72
50	Real-time OCT image of the pupillary region.	72
51	Anterior segment OCT image of AC in unaccommodating person.	74
52	OCT image of 10.0 D accommodation.	74
53	OCT image of high crystalline lens rise.	77
54	ACD measurement using OCT.	77
55	AC width measurement using OCT.	79
56	OCT image showing free zone of AC-IOL.	79
57	OCT image before and after cataract extraction and IOL implantation.	82
58	OCT images showing calcification on both IOL surfaces.	84
59	AS-OCT imaging showing effect of YAG laser in capsular block syndrome.	85
60	Using the OCT software, the distance between the anterior capsule and IOL	87
	surface is measured at the capsulorhexis edge.	
61	AS-OCT images showing PCO types.	87
62	830 nm OCT image of AC angle showing layers of iris.	89
63	Real-time OCT image of darkly pigmented iris.	89
64	OCT image showing effect of light on lightly pigmented iris.	91
65	OCT image of an iris tumor.	91
66	Four scan OCT images of an iris cyst.	93
67	None scaled OCT image of the AC angle and ciliary body region.	95
68	Real-time OCT image of the angle region of darkly pigmented eye.	95
69	Real-time OCT image of the region just posterior to the limbus.	97
70	OCT image showing suprachoriodal effusion.	97
71	Image showing trabeculectomy evaluation with intra-operative OCT.	99

List of Figures

Proper evaluation of the anterior segment of the eye is vital. In addition to conventional methods of ocular examination, investigative imaging techniques are very important.

Anterior segment imaging has made tremendous strides since the introduction of the slit lamp biomicroscopy. When the slit illumination device of Gullstrand was combined with Czapski's binocular microscope in 1916, a major advance was marked as more accurate 3-dimentional visualization and localization of anterior segment pathology became possible. Subsequent advances in anterior imaging included slit lamp photography, anterior segment fluorescein angiography, specular microscopy, corneal topography, ultrasonic biomicroscopy, confocal microscopy, Scheimflug imaging and anterior segment Optical Coherence Tomography (OCT) (*Dupps et al.*, 2006).

OCT is an investigative imaging technology having its applications in biology and medicine. Its attractive features include high cellular-level resolution, real-time acquisition rates (high number of clear images can be taken per second) and spectroscopic feature extraction in a compact non invasive instrument. OCT can perform optical biopsies of tissues, producing images approaching the resolution of histology without having to resect for diagnosis (*Boppart et al.*, 2003).

Ophthalmologic applications of OCT began with retinal imaging before using it in anterior segment. OCT imaging of retina was helpful in identification of local defects in the nerve fiber layer that occur in early stages of glaucoma. Also, it is used as a sensitive diagnostic test for the early detection of macular thickening in patients with diabetic macular edema and for visualization and evaluation of macular holes, genetic retinal diseases, retinal detachments, retinoschisis, choroidal tumors and optic nerve disorders (*Hrynchak et al.*, 2000).

Anterior segment OCT evolved from OCT developed for posterior segment imaging and typically uses a longer wavelength infrared laser (1310 nm versus 830 nm). Because the longer wavelength is mostly absorbed by the anterior segment structures, higher power can be used without damaging the retina (15 mW for anterior segment OCT versus 0.7 mW for posterior segment OCT). Higher power combined with higher sampling rate (number of signals recorded/ second) result in higher image resolution compared to posterior segment OCT (*Huang et al.*, 2004).

High resolution imaging of OCT can overcome many of the limitations of the current techniques used to image the anterior segment of the eye (*Radhakrishnan et al.*, 2001).

Recent studies described the use of trans-scleral OCT with wavelength of 1310 nm light which allowed deeper penetration in highly scattering tissue such as the sclera. The obtained images showed morphological details better than those obtained with conventional 830 nm OCT systems (*Radhakrishnan et al.*, 2001).

Anterior segment (AS) OCT is helpful in evaluation and exploration of the anterior segment structures including tear film, cornea, iris, crystalline lens, anterior chamber, sclera and ciliary body. The 1310-nm light wavelength is blocked by pigments preventing exploration behind the iris. However, the AS-OCT is capable of providing good-quality images and a better visualization of the anatomical relationships of the anterior segment, even behind an opaque cornea (*Biakoff et al.*, 2005).

Anterior segment OCT allowed better evaluation of refractive surgeries and IOL implantation. Also, internal structures of the filtering bleb and deep sclerectomies can be visualized. This could be a new way to assess the postoperative healing process with the possibility of earlier intervention in cases of impending scarring (*Muller et al.*, 2007).

The aim of this essay is to review the role of the optical coherence tomography as a new imaging modality in evaluation of anterior segment of the eye.

Optical principle of OCT (Echo time Delay):

OCT is analogous to ultrasound except that near-infrared light waves instead of acoustic waves are used to measure distances of specific structures (Fig.1). OCT depends on optical ranging; in other words, distances are measured by shining a beam of light onto the object, then recording the echo time delay of light. Since the velocity of light is so high, it is not possible to directly measure the echo time delay of reflections; therefore, a technique known as low-coherence interferometry compares reflected light from the eye to that reflected from a reference path of known length. Different internal structures produce different time delays, and cross-sectional images of the structures can be generated by scanning the incident optical beam. Actually these two dimensional scans are black and white, however, they are displayed in a color scale where 'warm' colors (red to white) represent areas of high optical reflectivity, and 'cool' colors (blue to black) represent areas of low reflectivity (*Puliafito et al.*, 1996).

It is important to note that although the homographic image represents the true dimensions of the structure being measured, the coloring of different structures represents different optical properties and not necessarily different tissue morphology. Care must be taken to avoid interpreting images analogously to conventional histopathology. OCT imaging is similar to ultrasound where different degrees of ultrasound backscattering correspond to different color or grey levels except that in OCT images, different optical reflection and scattering properties are measured (Swanson et al., 1993).